The July 2022 issue of IEEE Spectrum is here!

Close bar

New Eye Sensor Could Be Boon for Glaucoma Patients

An implantable microfluidic lens that reads ocular pressure could provide 24-h home-monitoring for glaucoma patients

2 min read
Tweezers holding a contact lens.
A microfluidic sensor embedded within an implantable lens could help monitor eye pressure in glaucoma patients. High pressure can cause blindness. The sensor is a microfluidic channel connected on one side to the eye fluid and to a tiny gas reservoir on the other. The lens' arms stabilize the lens in place within the eye.
Photo: Yossi Mandel

human os icon

A new lens-mounted microfluidic sensor can measure fluid pressure inside the eye and provide a readout with a smartphone camera. The simple, low-cost device could make it much easier for doctors to diagnose blindness-causing glaucoma. It could also give glaucoma patients a 24-hour home-based monitoring test similar to the glucose monitors available for diabetics.

Glaucoma affects 65 million people and is the second-most common cause of blindness in the world. One of its main risk factors is an increase in the eyeball fluid pressure, which can build up enough to damage the optic nerve. Eye doctors today measure this intraocular pressure using a tonometer, but the test is not always accurate.

The new sensor consists of an airtight 50 µm-channel that runs around most of the periphery of a lens that is used for cataract surgery. On one side it ends in a tiny gas reservoir, while on the other it connects to the aqueous eyeball fluid. A doctor would surgically implant the lens into a patient’s eye.

When the microchannel is connected into the eye chamber, pressure drives the intraocular fluid into the microchannel, compressing the reservoir gas until the gas pressure and liquid pressure reach equilibrium. An increase or decrease in the intraocular pressure forces the fluid to move toward or away from the gas reservoir. A smartphone camera equipped with an optical adapter and image analysis software can be used to accurately detect the position of the liquid. The optical adapter positions the camera in front of the pupil and shades the eye, causing the pupil to dilate and reveal the sensor.

Yossi Mandel of Bar Ilan University in RamatGan, Israel and Stephen Quake of Stanford University and their colleagues reported the new sensor in the journal Nature Medicine.

The researchers first tested and calibrated the sensor in a pressure chamber by simulating changes in intraocular pressure. They found that the movement of the liquid inside the microchannel was linear to pressure changes and sensitive to pressure fluctuations as small as 1 mm Hg. Normal intraocular pressure ranges between 10-21 mm Hg, but can increase by 8 mm Hg when a person is lying down. The researchers also tested the implant in surgically removed pig eyes, where it also showed a detection limit of 1 mm Hg.

Other eye pressure sensors exist. University of Michigan researchers have developed, for instance, microelectromechanical system-based capacitive sensors. And Swiss medical device-maker Sensimed already has a commercial contact lens-based eye pressure sensor in which a piezoelectric platinum ring changes resistance when the eyeball inflates. But these approaches rely on wireless data telemetry, which requires bulky antenna and power sources.

The optical readout on the new microfluidic sensor could be easier to use, though it does have its own limitations. Reading the fluid position through a hazy cornea, which can happen in glaucoma patients, could be difficult, for instance. And gas could leak out of the sensor walls, making readings inaccurate. Nevertheless, the researchers say that their experimental results suggest a 10-year device life.

The Conversation (0)
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓Show less