The July 2022 issue of IEEE Spectrum is here!

Close bar

The Hyperloop Is Hyper Old

Elon Musk merely renamed a 200-year-old dream

3 min read
Illustration of a tube and various ways of moving vehicles.

William Heath's 1829 engraving pokes fun at a vacuum tube that conveys travelers from London to Bengal.

Universal Images Group/Getty Images

"Lord how this world improves as we grow older," reads the caption for a panel in the " March of Intellect," part of a series of colored etchings published between 1825 and 1829. The artist, William Heath (1794–1840), shows many futuristic contraptions, including a four-wheeled steam-powered horse called Velocity, a suspension bridge from Cape Town to Bengal, a gun-carrying platform lifted by four balloons, and a giant winged flying fish conveying convicts from England to New South Wales, in Australia. But the main object is a massive, seamless metallic tube taking travelers from East London's Greenwich Hill to Bengal, courtesy of the Grand Vacuum Tube Company.


A group of people in front of a framework of a vehicle.

Photo of a small vehicle on a track. A public demonstration of the railway takes place in London in 1914. [top]; A 1910 photograph shows a working model of Émile Bachelet's magnetically levitated railway, in Mount Vernon, N.Y. [bottom]Émile Bachelet Collection/Archives Center/National Museum of American History

Heath was no science-fiction pioneer. Hisfanciful etching was just a spoof of an engineering project proposed in 1825 and called the London and Edinburgh Vacuum Tunnel Company, which was to be established with the capital of 20 million pounds sterling. The concept was based on a 1799 proposal made by George Medhurst: A rectangular tunnel was to move goods in wagons, the vacuum was to be created by the condensation of steam, and the impetus was to be "the pressure of the atmosphere, which...is so astonishing as almost to exceed belief."

Yes, this is the first known attempt at what during the second decade of the 21st century became known as the hyperloop. That word, coined by Elon Musk, constitutes his main original contribution to the technology.

By the time Heath was drawing his intercontinental conveyor, enough was known about vacuum to realize that it would be the best option for achieving unprecedented travel speeds. But no materials were available to build such a tube—above all, there was no way to produce affordable high-tensile steel—nor were there ready means to enclose people in vacuum-moving containers.

Less than a century later, Émile Bachelet, a French electrician who emigrated to the United States, solved the propulsion part of the challenge with his 19 March 1912 patent of a "Levitation transmitting apparatus." In 1914, he presented a small-scale working model of a magnetically levitated train with a tubular prow, powerful magnets at the track's bottom, and tubular steel cars on an aluminum base.

A long white tube in the middle of the desert.

View of the passenger pod from inside the tube.

Two people in safety equipment next to a long pod.  Virgin Hyperloop, which aims to commercialize the concept, has built a test track in Las Vegas [top]. The passenger pod [middle] is magnetically levitated; it can be introduced into the vacuum tube through an air lock [bottom] at the end.Virgin Hyperloop

Japanese researchers have been experimenting with a modern version of Bachelet's maglev concept since 1969, testing open-air train models at a track in Miyazaki. Short trials were done in Germany and the Soviet Union. In 2002, China got the only operating maglev line—built by Siemens—running from the Shanghai Pudong International Airport to Shanghai; now China claims to be preparing to test it at speeds up to 1,000 kilometers per hour. But outside East Asia, maglev remained nothing but a curiosity until 2012, when Elon Musk put his spin on it.

People unaware of this long history greeted the hyperloop as stunningly original and fabulously transformative. A decade later we have many route proposals, and many companies engaged in testing and design, but not a single commercial application that can demonstrate that this is an affordable, profitable, reliable, and widely replicable travel option. Vacuum physicists and railway engineers, who best appreciate the challenges involved in such projects, have pointed out a long list of fundamental difficulties that must be overcome before public-carrying vacuum tubes could be as common as steel-wheel high-speed rail.

Other, nontrivial, problems run from the common and intractable—obtaining rights-of-way for hundreds, even thousands, kilometers of tracks elevated on pylons in NIMBY-prone societies—to the uncommon and unprecedented: maintaining the thousandfold pressure difference between the inside and outside steel walls of an evacuated tube along hundreds of kilometers of track while coping with the metal's thermal expansion.

Before rushing to buy shares in a hyperloop venture in 2022, remember the 1825 London and Edinburgh Vacuum Tunnel Company.

The Conversation (3)
Michael Dowling27 Nov, 2021
INDV

Thunderf00t and EEVblog did videos, on YouTube, about this old idea in 2014-15.

Roger Brooks28 Jan, 2022
LS

The idea of a maglev train in an evacuated tunnel underground from Zurich to Geneva was propoosed under the name SwissMetro in the early 1970s, as reported in the Dec. 2015 Spectrum. The article was incorrect in one respect: the project isn‘t dead, but is still being pursued under the name swissmetro-ng.

Yawei Zhang11 Dec, 2021
INDV

Impossible & fantasy always sells, eventually works or not put aside. Other people's money.

Twenty people crowd into a cubicle, the man in the center seated holding a silicon wafer full of chips

Intel's million-transistor chip development team

In San Francisco on Feb. 27, 1989, Intel Corp., Santa Clara, Calif., startled the world of high technology by presenting the first ever 1-million-transistor microprocessor, which was also the company’s first such chip to use a reduced instruction set.

The number of transistors alone marks a huge leap upward: Intel’s previous microprocessor, the 80386, has only 275,000 of them. But this long-deferred move into the booming market in reduced-instruction-set computing (RISC) was more of a shock, in part because it broke with Intel’s tradition of compatibility with earlier processors—and not least because after three well-guarded years in development the chip came as a complete surprise. Now designated the i860, it entered development in 1986 about the same time as the 80486, the yet-to-be-introduced successor to Intel’s highly regarded 80286 and 80386. The two chips have about the same area and use the same 1-micrometer CMOS technology then under development at the company’s systems production and manufacturing plant in Hillsboro, Ore. But with the i860, then code-named the N10, the company planned a revolution.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}