The December 2022 issue of IEEE Spectrum is here!

Close bar

Ground-Effect Robot Could Be Key To Future High-Speed Trains

Trains that levitate on cushions of air could be the future of fast and efficient travel, if this robot can figure out how to keep them stable

2 min read
Ground-Effect Robot Could Be Key To Future High-Speed Trains

japanese air cushion high speed train

Japanese prototype of a train that levitates on cushions of air.

High speed trains are huge in Asia, but barring a catastrophe, most of them are designed to stay firmly on the ground, running on rails. There are plenty of good reasons not to run on rails, though, one of which is that you can go much faster without all that friction. This is the idea behind maglev trains, but there’s still a lot of wind drag that crops up between the bottom of a maglev train and its track that makes them less efficient (which combined with other problems make maglevs very costly).

japanese air cushion high speed train

A ground-effect vehicle takes advantage of this fast-moving air and uses some stubby little wings to fly just above the ground, like a maglev without the mag. This is a tricky thing to do, since you have to control the vehicle more like an airplane than a train, meaning that you have to deal with pitch, roll, and yaw and not just the throttle. A Japanese research group led by Yusuke Sugahara at Tohoku University has built robotic prototype of a free flying ground-effect vehicle [photo above] that they’re using to test an autonomous three axis stabilization system:

The researchers are looking to use this robot to generate a dynamic model of how vehicles like these operate, which they hope to apply to a manned experimental prototype train [first photo at the top] that can travel at 200 kilometers per hour in a U-shaped concrete channel that keeps it from careening out of control.

Later, the plan is that the same technology can scale and power a large commuter rail system called the Aero Train [concept below]. If this is the future of commuting, we’ll be literally flying to work some day.

japanese air cushion high speed train

Sugahara and his colleagues describe the project in a paper, “Levitation Control of Experimental Wing-in-Ground Effect Vehicle along Z Axis and about Roll and Pitch Axes,” presented today at the IEEE International Conference on Robotics and Automation (ICRA), in Shanghai.

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less