The August 2022 issue of IEEE Spectrum is here!

Close bar

Ground-Effect Robot Could Be Key To Future High-Speed Trains

Trains that levitate on cushions of air could be the future of fast and efficient travel, if this robot can figure out how to keep them stable

2 min read
Ground-Effect Robot Could Be Key To Future High-Speed Trains

japanese air cushion high speed train

Japanese prototype of a train that levitates on cushions of air.

High speed trains are huge in Asia, but barring a catastrophe, most of them are designed to stay firmly on the ground, running on rails. There are plenty of good reasons not to run on rails, though, one of which is that you can go much faster without all that friction. This is the idea behind maglev trains, but there’s still a lot of wind drag that crops up between the bottom of a maglev train and its track that makes them less efficient (which combined with other problems make maglevs very costly).

japanese air cushion high speed train

A ground-effect vehicle takes advantage of this fast-moving air and uses some stubby little wings to fly just above the ground, like a maglev without the mag. This is a tricky thing to do, since you have to control the vehicle more like an airplane than a train, meaning that you have to deal with pitch, roll, and yaw and not just the throttle. A Japanese research group led by Yusuke Sugahara at Tohoku University has built robotic prototype of a free flying ground-effect vehicle [photo above] that they’re using to test an autonomous three axis stabilization system:

The researchers are looking to use this robot to generate a dynamic model of how vehicles like these operate, which they hope to apply to a manned experimental prototype train [first photo at the top] that can travel at 200 kilometers per hour in a U-shaped concrete channel that keeps it from careening out of control.

Later, the plan is that the same technology can scale and power a large commuter rail system called the Aero Train [concept below]. If this is the future of commuting, we’ll be literally flying to work some day.

japanese air cushion high speed train

Sugahara and his colleagues describe the project in a paper, “Levitation Control of Experimental Wing-in-Ground Effect Vehicle along Z Axis and about Roll and Pitch Axes,” presented today at the IEEE International Conference on Robotics and Automation (ICRA), in Shanghai.

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page
Blue

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less