Graphene Nanoribbons Reach Out to the Molecular World

For the first time, the magnetic porphyrin molecule critical to animal and plant life has been directly connected to an electronic circuit

2 min read
For first time the magnetic porphyrin molecule has been directly connected to an electronic circuit
Credit: Jingcheng Li, Nanogune

A collaboration among Spanish research institutes—led by the nanoGUNE Cooperative Research Center (CIC)—has made a significant breakthrough in so-called molecular electronics by devising a way to connect magnetic porphyrin molecules to graphene nanoribbons. These connections may be another example of how graphene could enable the potential of molecular electronics.

Porphyrin is a hemogloblin-like molecule that is responsible for making photosynthesis possible in plants and transporting oxygen in our blood. But recently, researchers have been experimenting with so-called magnetic porphyrins and discovered that they can form the basis of spintronic devices.

Spintronics involves manipulating the spin of electrons and in this way differs from conventional electronics that manipulates their movement. It is this spin that is responsible for magnetism: When a majority of electrons in a material have their spins pointing in the same direction, the material is magnetized. If you can move all the spins up or down and can read that direction, you can create the foundation of the “0” and “1” of digital logic.

Spintronic devices based on the porphyrin molecule exploit the magnetic atom—typically iron, which has spin-polarized states—that is in the middle of each molecule. There are a number of ways of exploiting the spin of these magnetic atoms to polarize the transported current. If magnetic molecules with a larger spin are used—the so-called a single-molecule magnet—a “1” or “0” state could be stabilized by a magnetic field and read by currents.

The Spanish researchers have taken a unique approach to setting this up. They’ve created direct connections to the molecules with atomically precise graphene wires, which covalently bond to specific sites of the molecules.

“This allows the injection of electronic currents into the molecule,” says Nacho Pascual, Ikerbasque Professor and leader of the Nanoimaging Group at nanoGUNE. “We further show that even after the connection, the molecule maintains its magnetic property.”

Pascual adds that the Spanish collaborators have demonstrated that small variations in the way the graphene nanoribbons are attached to a molecule can alter its magnetic properties. Further, a  molecule’s spin can be manipulated via the injected currents.

“We tested the magnetization by performing tunneling spectroscopy,” says Pascual. “We saw that the iron ion maintained its spin and its preferred direction after connection to the graphene nanoribbons, but in a few cases where the bonding was different it completly vanished. So the way of contacting is crucial.”

Pascual sees this work as bringing spintronics into molecular electronics, and has unofficially dubbed it “Molecular Spintronics.” 

In future research, Pascual and his colleagues aim to use single-molecule magnets, and improve the magnetic function in transport experiments by injecting current though the ribbons. “This will be closer to the real usage of these devices,” he added.

The Conversation (0)

3D-Stacked CMOS Takes Moore’s Law to New Heights

When transistors can’t get any smaller, the only direction is up

10 min read
An image of stacked squares with yellow flat bars through them.
Emily Cooper

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less