Graphene Filament Enables Fabrication of Electronic Devices with 3-D Printing

Graphene-based 3-D printing filament may trigger an explosion of printing electronics and circuitry

2 min read
Graphene Filament Enables Fabrication of Electronic Devices with 3-D Printing
Photo: Graphene 3D Lab

Earlier this month, we reported on research that was bringing the attractive qualities of graphene in its 2-D form to the fabrication of 3-D objects.

Now a start-up based in Calverton, NY, Graphene 3D Lab, Inc., has made commercially available a graphene-based conductive polymer filament for use in 3-D printing to fabricate electronic devices. The graphene-based filament, which is targeted for both industry and hobbyists, has been dubbed Black Magic 3D.

“Our material is the most electrically conductive material on the market right now and is the best option for 3-D printing of electronics,” claimed Daniel Stolyarov, who along with Elena Polyakova, are Co-CEOs, in an e-mail interview. “Even though our material is more expensive, you only need a very small amount (a few grams), which would cost as low as $1, along with regular material to make 3-D printed electronics. Without graphene this is not possible.”

Stolyarov believes that this graphene-enabled polymer filament is unique on the market in its ability to impart electrical conductivity. Stolyarov argues that their product compares favorably to other 3-D printing filaments that have at best a volume resistivity of 15 Ohms-centimeter (Ohms-cm), whereas Black Magic 3D’s volume resistivity measures at 0.6 Ohms-cm—25 times better. According to Stolyarov, 15 Ohms-cm is just not good enough for most of electronic applications. If electrical properties are poor, the device will not work properly.

Stolyarov has pointed to the emerging trend of 3-D printed electronics, which he believes may soon show explosive growth. An indication of this potential was the recent launch of a new 3-D printer from a company called Voxel8 that specifically targets the printing of electronics and circuitry.

However, Stolyarov is quick to note that his company’s graphene-based filament can be used with just about any 3-D printer on the market now, from hobbyist to industrial.

To demonstrate how the graphene-based filament can fabricate devices requiring high thermal and electrical conductivity, the company produced a battery. It seems that this battery design remains primarily to demonstrate the capabilities of the graphene 3-D printing filament.

“The 3-D printed graphene battery project is still being developed and we are very much looking forward to offering more details on the technology in the future,” said Stolyarov.

The Conversation (0)

3D-Stacked CMOS Takes Moore’s Law to New Heights

When transistors can’t get any smaller, the only direction is up

10 min read
An image of stacked squares with yellow flat bars through them.
Emily Cooper
Green

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}