The December 2022 issue of IEEE Spectrum is here!

Close bar

A New Way For Autonomous Racing Cars to Control Sideslip

Swiss Formula Student team uses AI and sensors on the vehicle to calculate velocity and control sideslip

2 min read
The driverless "pilatus"electric race car on the race track of Formula Student Germany.
Photo: Vivek Maru/Formula Student Germany

When race car drivers take tight turns at high speeds, they rely on their experience and gut feeling to hit the gas pedal without spinning out. But how does an autonomous race car make the same decision?

Currently, many autonomous cars rely on expensive external sensors to calculate a vehicle’s velocity and chance of sideslipping on the racetrack. In a different approach, one research team in Switzerland has recently developed a novel a machine learning algorithm that harnesses measurements from more simple sensors. They describe their design in a study published August 14 in IEEE Robotics and Automation Letters.

As a race car takes a turn around the track, its forward and lateral velocity determines how well the tires grip the road—and how much sideslip occurs.

“(Autonomous) race cars are typically equipped with special sensors that are very accurate, exhibit almost no noise, and measure the lateral and longitudinal velocity separately,” explains Victor Reijgwart, of the Autonomous Systems Lab at ETH Zurich and a co-creator of the new design.

These state-of-the art sensors only require simple filters (or calculations) to estimate velocity and control sideslip. But, as Reijgwart notes, “Unfortunately, these sensors are heavy and very expensive—with single sensors often costing as much as an entry-level consumer car.”

His group, whose Formula Student team is named AMZ Racing, sought a novel solution. Their resulting machine learning algorithm relies on several measurements including: two normal inertial measurement units, the rotation speed and motor torques at all four wheels, and the steering angle. They trained their model using real data from racing cars on flat, gravel, bumpy, and wet road surfaces.

In their study, the researchers compared their approach to the external velocity sensors that have been commonly used at multiple Formula Student Driverless events across Europe in 2019. Results show that the new approach demonstrates comparable performance when the cars are undergoing a high level of sideslip (at 10◦ at the rear axle), but offers several advantages. For example, the new approach is better at rejecting biases and outlier measurements. The results also show that the machine learning approach is 15 times better than using just simple algorithms with non-specialized sensors.

“But learning from data is a two-edged sword,” says Sirish Srinivasan, another AMZ Racing member at ETH Zurich. “While the approach works well when it has been used under circumstances that are similar to the data it was trained on, safe behavior of the [model] cannot yet be guaranteed when it is used in conditions that significantly differ from the training data.”

Some examples include unusual weather conditions, changes in tire pressure, or other unexpected events.

The AMZ Racing team participates in yearly Formula Student Driverless engineering competitions, and hopes to apply this technique in the next race.

In the meantime, the team is interested in further improving their technique. “Several open research questions remain, but we feel like the most central one would be how to deal with unforeseen circumstances,” says Reijgwart. “This is, arguably, a major open question for the machine learning community in general.”

He notes that adding more “common sense” to the model, which would give it more conservative but safe estimates in unforeseen circumstances, is one option.  In a more complex approach, the model could perhaps be taught to predict its own uncertainty, so that it hands over control to a simpler but more reliable mode of calculation when the AI encounters an unfamiliar scenario.

The Conversation (0)

We Need More Than Just Electric Vehicles

To decarbonize road transport we need to complement EVs with bikes, rail, city planning, and alternative energy

11 min read
A worker works on the frame of a car on an assembly line.

China has more EVs than any other country—but it also gets most of its electricity from coal.

VCG/Getty Images
Green

EVs have finally come of age. The total cost of purchasing and driving one—the cost of ownership—has fallen nearly to parity with a typical gasoline-fueled car. Scientists and engineers have extended the range of EVs by cramming ever more energy into their batteries, and vehicle-charging networks have expanded in many countries. In the United States, for example, there are more than 49,000 public charging stations, and it is now possible to drive an EV from New York to California using public charging networks.

With all this, consumers and policymakers alike are hopeful that society will soon greatly reduce its carbon emissions by replacing today’s cars with electric vehicles. Indeed, adopting electric vehicles will go a long way in helping to improve environmental outcomes. But EVs come with important weaknesses, and so people shouldn’t count on them alone to do the job, even for the transportation sector.

Keep Reading ↓Show less