Fukushima Operators Prepare to Remove Spent Fuel Rods

The first step in a 40-year decommissioning process is about to begin

2 min read
Fukushima Operators Prepare to Remove Spent Fuel Rods
Tomohiro Ohsumi/AP Photo

At Japan's crippled Fukushima Daiichi nuclear power plant, engineers are preparing to take the first big step toward decommissioning the facility. In the next few weeks, operators will begin removing the spent fuel rods from the storage pools in the badly damaged reactor 4. 

The Fukushima Daiichi plant was devastated in March 2011, when an earthquake and tsunami triggered a series of meltdowns and explosions at the plant. Reactor 4 was not in operation at the time of the accident; it was shut down for routine maintenance and refueling, which meant that its supply of fuel rods were in a storage pool on a top floor of the reactor building.

When an explosion shattered the reactor 4 building on 15 March, top nuclear officials in the United States and Japan worried that the pool had been structurally damaged, which would allow water to leak out and leave the fuel rods exposed and overheating. Since the spent fuel pools aren't sealed in heavy steel or concrete structures, such exposure would send large amount of radiation into the environment. The chairman of the US Nuclear Regulatory Commission, Gregory Jaczko, essentially caused an international incident when he stated on 16 March that reactor 4's spent fuel pool was empty of water. The public panicked until Japanese officials denied Jaczko's statements, and produced evidence that the pool was still full of water. 

The reactor 4 spent fuel pool continued to be a hot topic, however, with some activists questioning its structural integrity and its ability to withstand any future earthquakes. Additionally, its cache of 1533 fuel units—the most held at any of Fukushima's reactor buildings—makes it a priority for decommissioning.

TEPCO, the utility that owns the Fukushima Daiichi plant, has been preparing for this first fuel rod removal for some time. Workers have already removed much of the debris from inside the pool, and Japan's Nuclear Regulatory Authority has been inspecting the site and assessing the removal plan. When the operation begins in the next week or two, workers will use a crane to lift up the fuel assemblies and place them in submerged casks. Those casks will then be removed from the pool and taken elsewhere for safer storage. The video below, from TEPCO, explains the process in more detail. 

The operation is expected to be completed before the end of 2014. But that's just the first step in a decommissioning process that is expected to take 40 years. The spent fuel must be removed from the other reactor buildings before TEPCO can even being the process of locating and removing the active fuel in reactors 1, 2, and 3, all of which are thought to have suffered partial meltdowns.

Image: Tomohiro Ohsumi/AP Photo  

The Conversation (0)

Smokey the AI

Smart image analysis algorithms, fed by cameras carried by drones and ground vehicles, can help power companies prevent forest fires

7 min read
Smokey the AI

The 2021 Dixie Fire in northern California is suspected of being caused by Pacific Gas & Electric's equipment. The fire is the second-largest in California history.

Robyn Beck/AFP/Getty Images

The 2020 fire season in the United States was the worst in at least 70 years, with some 4 million hectares burned on the west coast alone. These West Coast fires killed at least 37 people, destroyed hundreds of structures, caused nearly US $20 billion in damage, and filled the air with smoke that threatened the health of millions of people. And this was on top of a 2018 fire season that burned more than 700,000 hectares of land in California, and a 2019-to-2020 wildfire season in Australia that torched nearly 18 million hectares.

While some of these fires started from human carelessness—or arson—far too many were sparked and spread by the electrical power infrastructure and power lines. The California Department of Forestry and Fire Protection (Cal Fire) calculates that nearly 100,000 burned hectares of those 2018 California fires were the fault of the electric power infrastructure, including the devastating Camp Fire, which wiped out most of the town of Paradise. And in July of this year, Pacific Gas & Electric indicated that blown fuses on one of its utility poles may have sparked the Dixie Fire, which burned nearly 400,000 hectares.

Until these recent disasters, most people, even those living in vulnerable areas, didn't give much thought to the fire risk from the electrical infrastructure. Power companies trim trees and inspect lines on a regular—if not particularly frequent—basis.

However, the frequency of these inspections has changed little over the years, even though climate change is causing drier and hotter weather conditions that lead up to more intense wildfires. In addition, many key electrical components are beyond their shelf lives, including insulators, transformers, arrestors, and splices that are more than 40 years old. Many transmission towers, most built for a 40-year lifespan, are entering their final decade.

Keep Reading ↓ Show less