The July 2022 issue of IEEE Spectrum is here!

Close bar

Flying, Walking Vampire Bat Robot Is Back

With new, foldable wings, DALER is more capable (and bat-like) than ever

2 min read
Flying, Walking Vampire Bat Robot Is Back
With new, foldable wings, DALER is more capable (and bat-like) than ever.
Photo: EPFL

A few years ago, Ludovic Daler showed us a flying robot that he was working on that had the ability to “walk” by rotating its wings while on the ground. We love seeing designs like this that are completely, utterly out of the box, and Ludovic promised even more: 

We aim to make adaptive deployable wings... their shape could be adaptively modified to augment efficiency of forward flight, hover flight, and displacement on the ground.

With a little bit of inspiration from the common vampire bat (!), Ludovic has delivered with this updated robot that keeps its walking ability and now includes a foldable skeleton mechanism that lets it deploy and retract its wings.

The robot is called DALER (Deployable Air-Land Exploration Robot), and I’m sure it’s just a coincidence that Ludovic Daler is the lead author on a paper that’s just been published in Bionspiration & Biomimetics. The focus of the paper is, of course, the robot’s adaptive wings, which enable ground locomotion without sacrificing much weight or structural efficiency, since the rotating wingtips double as an attitude control system when the robot is in the air. The foldable wings (studying the bats helped out here) help to increase walking efficiency on the ground, and also allow the robot to squeeze into places that it might not otherwise be able to reach.

It’s obvious that DALER is, um, not the most graceful of robots when it’s stuck on the ground, but there’s a huge difference between the zero ground mobility that most aerial robots have and some ground mobility, however limited. For what it’s worth, bats operate the same way. In the air, DALER can reach 20 m/s, while on the ground, it tops out at 6 cm/s. It’s not going to get very far at 6 cm/s, but in a search and rescue scenario, the ability to move on the ground at all means that it can land and scramble around a little bit, maybe moving underneath obstructions to investigate areas that are otherwise inaccessible from the air.

The other appeal of ground mobility is that it gives a winged robot the capability to land, reorient itself, and then take off again. Rotary winged aircraft can do this, but they’re substantially less efficient over long distances. When a winged robot comes in for an autonomous landing, it’s usually better described as a controlled crash, and taking off without some form of assistance is usually impossible. DALER shouldn’t have this problem, and that’s where the research is heading next, according to EPFL:

Future development of the DALER will include the possibility to hover and to take off autonomously from the ground in order to allow the robot to return to the air and come back to base after the mission.

[ DALER ] via [ EPFL ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓Show less