The December 2022 issue of IEEE Spectrum is here!

Close bar

Floating Wind Turbines to Be Tested

It's too costly to build turbines in deep water, where the winds are better. Two companies think floating windmills are the answer

3 min read
Floating Wind Turbines to Be Tested

22 June 2009—On the weekend of 6 June, boats hauled a 120-meter-tall steel tower into the Amoy Fjord off Stavanger, Norway. Pulled upright and filled with ballast water, the tower became the buoy for the world’s first full-scale floating wind turbine. The turbine, now placed 10 kilometers from the coast, is expected to start feeding power into the mainland grid by mid-July. Over the next two years, Norwegian energy company StatoilHydro will test how the 2.3-megawatt turbine holds up in 220-meter-deep water.

Much could go wrong. Corrosion, floating debris, sea ice, and marine growth are some of the concerns. More important, the buoy, which is tethered to the seabed with three cables, must keep the turbine from pitching and rolling too violently in ocean swells. If the buoys and cables fail, the blades could hit the water, or in the worst case, the entire turbine could overturn.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less