First Graphene Integrated Circuit

IBM researchers take next step in building graphene-based electronics

3 min read

9 June 2011—IBM researchers have built the first integrated circuit (IC) based on a graphene transistor—another step toward overcoming the limits of silicon and a potential path to flexible electronics.

The circuit, built on a wafer of silicon carbide, consists of field-effect transistors (FETs) made of graphene, a highly conductive chicken-wire-like arrangement of carbon that's a single atomic layer thick. The IC also includes metallic structures, such as on-chip inductors and the transistors' sources and drains. The work is described in this week's issue of Science. Researchers say that graphene, which has the potential to make transistors that operate at terahertz speeds, could one day supplant silicon as the basis for computer chips.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less