The February 2023 issue of IEEE Spectrum is here!

Close bar

Hum to Google to Identify Songs

The feature may resurrect concerns big tech is listening in on us

3 min read
A man sings into a phone as musical notes and letters swirl out of him and through the phone
Photo: iStockphoto

Ever have a song you can't remember the name of, nor any of its words? Now Google has a new feature where you can simply hum the melody and it can hopefully name that tune.

The idea of identifying songs through singing, humming or whistling instead of lyrics is not a new idea—the music app SoundHound has possessed hum-to-search for at least a decade. Google's new feature should help the search engine with the many requests it receives to identify music.


Google Hum tune in actionGoogle

Aparna Chennapragada, a Google vice president who introduced the new feature during a streamed event Oct. 15, said people ask Google "what song is playing" nearly 100 million times each month.

To use the new feature on a mobile device, open the latest version of the Google app or find the Google Search widget. Tap on the mic icon and say "what's this song?" or click the "Search a song" button. Then start humming for 10 to 15 seconds. On Google Assistant, say, "Hey Google, what's this song?" and then hum the tune. Perfect pitch is not needed.

The new feature is based on machine learning models that analyze each hum, whistle or singing and remove details such as accompanying instruments and the voice's timbre and tone. They next compare the melody to thousands of songs from around the world.

The feature will show users a list of the most likely songs based on the melody. They can then select a match, explore information on the song and artist, view any accompanying music videos or listen to the song, find the lyrics, or check out other recordings of the song if they are available.

"It could certain help connect musical artists and the music industry with customers," says Chris Rodgers, CEO and founder of Colorado SEO Pros. "In the music creation process, musicians might come up with amazing ideas, and it'll turn out those came from something they heard and replayed in their mind one-hundred times and then thought it was their own brilliant idea. So maybe this new feature could almost be a way to do an [intellectual property] check. 'I've got this amazing song, but is it really similar to something else out there?'"

Moreover, a user might hear a jingle in a commercial or some message from social media and want to identify those melodies. "I can see Google try to monetize that opportunity like they try to monetize everything," Rodgers says.

The new feature is currently available in English on iOS, and in more than 20 languages on Android. Google plans to expand it to more languages in the future.

"It's a cool feature. I don't think it has big commercial applications at this point, but I do think it helps the Google brand," Rodgers says.

One concern with this new feature is that Google may use such technology to covertly identify people by the sounds of their voices. "We know the technology is already there for the big tech companies to turn on receivers in phones," Rodgers says. "And there's a lot of anecdotal evidence that some of them may be listening to you. Facebook has denied this up and down, but I myself have anecdotal evidence."

"These are hard questions none of us have the answers to," Rodgers says. "We're all navigating a world of variables and unknowns hoping these companies have our best interests in mind while trying to enjoy the quote-unquote free technology they have, but at the end of the day, we know it comes at some kind of price."

The Conversation (1)
Caleb Adewole15 Mar, 2022
INDV

I like the idea of searching a song by just humming its lyrics!

The Inner Beauty of Basic Electronics

Open Circuits showcases the surprising complexity of passive components

5 min read
Vertical
A photo of a high-stability film resistor with the letters "MIS" in yellow.
All photos by Eric Schlaepfer & Windell H. Oskay
Blue

Eric Schlaepfer was trying to fix a broken piece of test equipment when he came across the cause of the problem—a troubled tantalum capacitor. The component had somehow shorted out, and he wanted to know why. So he polished it down for a look inside. He never found the source of the short, but he and his collaborator, Windell H. Oskay, discovered something even better: a breathtaking hidden world inside electronics. What followed were hours and hours of polishing, cleaning, and photography that resulted in Open Circuits: The Inner Beauty of Electronic Components (No Starch Press, 2022), an excerpt of which follows. As the authors write, everything about these components is deliberately designed to meet specific technical needs, but that design leads to “accidental beauty: the emergent aesthetics of things you were never expected to see.”

From a book that spans the wide world of electronics, what we at IEEE Spectrum found surprisingly compelling were the insides of things we don’t spend much time thinking about, passive components. Transistors, LEDs, and other semiconductors may be where the action is, but the simple physics of resistors, capacitors, and inductors have their own sort of splendor.

High-Stability Film Resistor

A photo of a high-stability film resistor with the letters "MIS" in yellow.

All photos by Eric Schlaepfer & Windell H. Oskay

This high-stability film resistor, about 4 millimeters in diameter, is made in much the same way as its inexpensive carbon-film cousin, but with exacting precision. A ceramic rod is coated with a fine layer of resistive film (thin metal, metal oxide, or carbon) and then a perfectly uniform helical groove is machined into the film.

Instead of coating the resistor with an epoxy, it’s hermetically sealed in a lustrous little glass envelope. This makes the resistor more robust, ideal for specialized cases such as precision reference instrumentation, where long-term stability of the resistor is critical. The glass envelope provides better isolation against moisture and other environmental changes than standard coatings like epoxy.

15-Turn Trimmer Potentiometer

A photo of a blue chip
A photo of a blue chip on a circuit board.

It takes 15 rotations of an adjustment screw to move a 15-turn trimmer potentiometer from one end of its resistive range to the other. Circuits that need to be adjusted with fine resolution control use this type of trimmer pot instead of the single-turn variety.

The resistive element in this trimmer is a strip of cermet—a composite of ceramic and metal—silk-screened on a white ceramic substrate. Screen-printed metal links each end of the strip to the connecting wires. It’s a flattened, linear version of the horseshoe-shaped resistive element in single-turn trimmers.

Turning the adjustment screw moves a plastic slider along a track. The wiper is a spring finger, a spring-loaded metal contact, attached to the slider. It makes contact between a metal strip and the selected point on the strip of resistive film.

Ceramic Disc Capacitor

A cutaway of a Ceramic Disc Capacitor
A photo of a Ceramic Disc Capacitor

Capacitors are fundamental electronic components that store energy in the form of static electricity. They’re used in countless ways, including for bulk energy storage, to smooth out electronic signals, and as computer memory cells. The simplest capacitor consists of two parallel metal plates with a gap between them, but capacitors can take many forms so long as there are two conductive surfaces, called electrodes, separated by an insulator.

A ceramic disc capacitor is a low-cost capacitor that is frequently found in appliances and toys. Its insulator is a ceramic disc, and its two parallel plates are extremely thin metal coatings that are evaporated or sputtered onto the disc’s outer surfaces. Connecting wires are attached using solder, and the whole assembly is dipped into a porous coating material that dries hard and protects the capacitor from damage.

Film Capacitor

An image of a cut away of a capacitor
A photo of a green capacitor.

Film capacitors are frequently found in high-quality audio equipment, such as headphone amplifiers, record players, graphic equalizers, and radio tuners. Their key feature is that the dielectric material is a plastic film, such as polyester or polypropylene.

The metal electrodes of this film capacitor are vacuum-deposited on the surfaces of long strips of plastic film. After the leads are attached, the films are rolled up and dipped into an epoxy that binds the assembly together. Then the completed assembly is dipped in a tough outer coating and marked with its value.

Other types of film capacitors are made by stacking flat layers of metallized plastic film, rather than rolling up layers of film.

Dipped Tantalum Capacitor

A photo of a cutaway of a Dipped Tantalum Capacitor

At the core of this capacitor is a porous pellet of tantalum metal. The pellet is made from tantalum powder and sintered, or compressed at a high temperature, into a dense, spongelike solid.

Just like a kitchen sponge, the resulting pellet has a high surface area per unit volume. The pellet is then anodized, creating an insulating oxide layer with an equally high surface area. This process packs a lot of capacitance into a compact device, using spongelike geometry rather than the stacked or rolled layers that most other capacitors use.

The device’s positive terminal, or anode, is connected directly to the tantalum metal. The negative terminal, or cathode, is formed by a thin layer of conductive manganese dioxide coating the pellet.

Axial Inductor

An image of a cutaway of a Axial Inductor
A photo of a collection of cut wires

Inductors are fundamental electronic components that store energy in the form of a magnetic field. They’re used, for example, in some types of power supplies to convert between voltages by alternately storing and releasing energy. This energy-efficient design helps maximize the battery life of cellphones and other portable electronics.

Inductors typically consist of a coil of insulated wire wrapped around a core of magnetic material like iron or ferrite, a ceramic filled with iron oxide. Current flowing around the core produces a magnetic field that acts as a sort of flywheel for current, smoothing out changes in the current as it flows through the inductor.

This axial inductor has a number of turns of varnished copper wire wrapped around a ferrite form and soldered to copper leads on its two ends. It has several layers of protection: a clear varnish over the windings, a light-green coating around the solder joints, and a striking green outer coating to protect the whole component and provide a surface for the colorful stripes that indicate its inductance value.

Power Supply Transformer

A photo of a collection of cut wires
A photo of a yellow element on a circuit board.

This transformer has multiple sets of windings and is used in a power supply to create multiple output AC voltages from a single AC input such as a wall outlet.

The small wires nearer the center are “high impedance” turns of magnet wire. These windings carry a higher voltage but a lower current. They’re protected by several layers of tape, a copper-foil electrostatic shield, and more tape.

The outer “low impedance” windings are made with thicker insulated wire and fewer turns. They handle a lower voltage but a higher current.

All of the windings are wrapped around a black plastic bobbin. Two pieces of ferrite ceramic are bonded together to form the magnetic core at the heart of the transformer.

This article appears in the February 2023 print issue.

{"imageShortcodeIds":[]}