The December 2022 issue of IEEE Spectrum is here!

Close bar

Engineers Attack Mt. Everest's 12-Ton Poop Problem

A new waste-to-energy system could help power a nearby Nepalese village

4 min read
Engineers Attack Mt. Everest's 12-Ton Poop Problem
Photo: John Harper/Corbis

For many amateur climbers, summiting Mount Everest represents one of life’s greatest challenges and achievements. But for the Nepalese and foreign professionals who work there, the larger challenge is figuring out how to keep the place clean.

Efforts to beautify what’s frequently called “the world’s highest garbage dump” have been under way for more than a decade, with mixed results. Spent oxygen canisters, empty beer bottles, and tattered tents recovered from the mountain can often be reused or recycled, but human waste is a messier problem. Each year, porters haul down some 12,000 kilograms of poop from base camps at Everest and the nearby Pumori, Lhotse, and Nuptse mountains. Getting the material off the mountain is one thing; however, properly disposing of it is another.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less