IEEE.orgIEEE Xplore Digital LibraryIEEE StandardsMore Sites
    Sign InJoin IEEE
    Deep-Learning First: Drive.ai's Path to Autonomous Driving
    Share
    FOR THE TECHNOLOGY INSIDER
    Explore by topic
    AerospaceAIBiomedicalClimate TechComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsTelecommunicationsTransportation
    IEEE Spectrum
    FOR THE TECHNOLOGY INSIDER

    Topics

    AerospaceAIBiomedicalClimate TechComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsTelecommunicationsTransportation

    Sections

    FeaturesNewsOpinionCareersDIYEngineering Resources

    More

    NewslettersSpecial ReportsCollectionsExplainersTop Programming LanguagesRobots Guide ↗IEEE Job Site ↗

    For IEEE Members

    Current IssueMagazine ArchiveThe InstituteThe Institute Archive

    For IEEE Members

    Current IssueMagazine ArchiveThe InstituteThe Institute Archive

    IEEE Spectrum

    About UsContact UsReprints & Permissions ↗Advertising ↗

    Follow IEEE Spectrum

    Support IEEE Spectrum

    IEEE Spectrum is the flagship publication of the IEEE — the world’s largest professional organization devoted to engineering and applied sciences. Our articles, videos, and infographics inform our readers about developments in technology, engineering, and science.
    Subscribe
    About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy PolicyCookie PreferencesAd Privacy Options
    © Copyright 2025 IEEE — All rights reserved. A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

    Enjoy more free content and benefits by creating an account

    Saving articles to read later requires an IEEE Spectrum account

    The Institute content is only available for members

    Downloading full PDF issues is exclusive for IEEE Members

    Downloading this e-book is exclusive for IEEE Members

    Access to Spectrum 's Digital Edition is exclusive for IEEE Members

    Following topics is a feature exclusive for IEEE Members

    Adding your response to an article requires an IEEE Spectrum account

    Create an account to access more content and features on IEEE Spectrum , including the ability to save articles to read later, download Spectrum Collections, and participate in conversations with readers and editors. For more exclusive content and features, consider Joining IEEE .

    Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more about IEEE →

    Join the world’s largest professional organization devoted to engineering and applied sciences and get access to this e-book plus all of IEEE Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more about IEEE →

    CREATE AN ACCOUNTSIGN IN
    JOIN IEEESIGN IN
    Close

    Access Thousands of Articles — Completely Free

    Create an account and get exclusive content and features: Save articles, download collections, and post comments — all free! For full access and benefits, subscribe to Spectrum.

    CREATE AN ACCOUNTSIGN IN
    TransportationVideo

    Deep-Learning First: Drive.ai's Path to Autonomous Driving

    These cars use deep learning to turn past experience into better decisions

    Evan Ackerman
    Alyssa Pagano
    13 Mar 2017
    side view of a black car in front of a concrete wall with the words drive ai written on the rear doorplay icon
    Photo provided by Drive.ai
    type:videoself drivingself-driving carssmart carsautonomous vehiclesdrive.aiaimachine learning

    Last month, IEEE Spectrum went out to California to take a ride in one of Drive.ai's autonomous cars, and to find out how they're using deep learning to master autonomous driving.

    It's only been about a year since Drive.ai went public, but already, the company has a fleet of four vehicles navigating around the San Francisco Bay Area  (mostly) autonomously—even in situations that are notoriously difficult forself-driving cars, like at night, or when it's raining.

    Drive.ai structured its approach to autonomous driving entirely around deep learning from the very beginning. "This is in contrast to a traditional robotics approach,” says Sameep Tandon, one of Drive.ai’s founders. “A lot of companies are just using deep learning for this component or that component, while we view it more holistically."

    Often, deep learning is used in perception, since there's so much variability inherent in how robots see the world. Many companies use deep learning for recognizing pedestrians in a camera image (to take one example), because deep learning excels at identifying one particular kind of thing (like a person) from within an arbitrary scene. Essentially, a deep learning system is able to learn to recognize patterns, and then extend that capability to patterns that it hasn't actually seen before: you don't have to train it on every single pedestrian that could possibly exist for it to be able to identify them.

    While a pedestrian in a camera image is a perceptual pattern, there are also patterns in decision making and motion planning that deep learning can be applied to, and Drive.ai is leveraging deep learning here as well. For example, the correct behavior at a four way stop, or when turning right on a red light, is the kind of variable, situation-dependent decision that deep learning algorithms excel at.

    Deep learning systems thrive on data. The more data an algorithm sees, the better it'll be able to recognize, and generalize about, the patterns that it needs to understand to drive safely. Data are not all created equal, though, which is why an immense amount of effort goes into collecting high quality data and then annotating it so that it's useful for training deep learning algorithms.

    What differentiates Drive.ai is that it’s able to use deep learning and automation for annotating data, helping to automate the data interpretation process from the start. Drive.ai has a small team of human annotators, most of whom are kept busy training brand new scenarios, or validating the annotation that the system does on its own.

    "What we want to be able to do is to train deep learning systems to help us with the perception and the decision making but also incorporate some rules and some human knowledge to make sure that it’s safe,” says Tandon.

    Read More: How Drive.ai Is Mastering Autonomous Driving with Deep Learning

    The Conversation (0)

    Trending Stories

    The most-read stories on IEEE Spectrum right now

    RoboticsNews

    Ghost Robotics’ Arm Brings Manipulation to Military Quadrupeds

    EnergyMagazineFeatureClimate Tech

    This Low-Cost Stopgap Tech Can Fix the Grid

    BiomedicalNews

    Glucose Monitor Accuracy Claims Fall Short for Users

    RoboticsHumanoid RobotsVideo

    Unitree Demos New $16k Robot

    Unitree's G1 robot is one of the cheapest—if not the cheapest—humanoid around

    IEEE Spectrum

    IEEE Spectrum is an award-winning technology magazine and the flagship publication of the IEEE, the world’s largest professional organization devoted to engineering and the applied sciences.

    30 Aug 2024
    Unitree Demos New $16k Robotplay icon

    IEEE Spectrum

    humanoid robotsunitreerobotics

    At ICRA 2024, Spectrum editor Evan Ackerman sat down with Unitree founder and CEO Xingxing Wang and Tony Yang, VP of Business Development, to talk about the company’s newest humanoid, the G1 model.

    Smaller, more flexible, and elegant, the G1 robot is designed for general use in service and industry, and is one of the cheapest—if not the cheapest—of a new wave of advanced AI humanoid robots.

    DIYVideo

    DIY: Classic 555 Timer Kit

    Follow along as we build and test one of our favorite kits of all time, the Discrete 555 Timer

    Stephen Cass

    Stephen Cass is the special projects editor at IEEE Spectrum. He currently helms Spectrum's Hands On column, and is also responsible for interactive projects such as the Top Programming Languages app. He has a bachelor's degree in experimental physics from Trinity College Dublin.

    23 Jul 2024
    DIY: Classic 555 Timer Kitplay icon

    IEEE Spectrum

    555hands onintegrated circuitstimerelectronics kitschip design

    Follow along as we build and test one of our favorite kits of all time, the Discrete 555 Timer! Build a huge version of one of the most iconic and surprisingly versatile integrated circuits of all time from transistor and resistors.

    The 555 chip has been used at one time or another by nearly every E.E. alive, and you can use it to detect pulses, make lights blink, debounce inputs, trigger alarms, and even make music (terrible music, but music nonetheless!). We first wrote up the kit in our Hands On column in Spectrum, and this is second version, which features some improvements over the original.

    Keep Reading ↓Show less
    RoboticsSpecial ReportsVideoEast Africa’s Big Bet On Drones

    360 Video: Zoom Over Zanzibar With Tanzania’s Drone Startups

    Come along for the ride as drones soar over the farms and schools of Tanzania

    Evan Ackerman

    Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

    Michael Koziol

    Michael Koziol is the news manager at IEEE Spectrum. Previously, he was an associate editor covering telecommunications. He graduated from Seattle University with bachelor's degrees in English and Physics, and earned his master's degree in science journalism from New York University.

    Eliza Strickland

    Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

    09 May 2019
    6:56
    360 Video: Zoom Over Zanzibar With Tanzania’s Drone Startupsplay icon
    Photo: IEEE Spectrum
    type:videodronestanzaniaeast africa dronesgadgetsafricamappingdelivery drones360 video

    With 360-degree video, IEEE Spectrum puts you aboard drones that are flying high above the Tanzanian landscape: You’ll ride along as drones soar above farms, towns, and the blue expanse of Lake Victoria. You’ll also meet the local entrepreneurs who are creating a new industry, finding applications for their drones in land surveying and delivery. And you’ll get a close-up view from a bamboo grove as a drone pilot named Bornlove builds a flying machine from bamboo and other materials.

    You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

    Keep Reading ↓Show less
    About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy PolicyCookie PreferencesAd Privacy Options
    © Copyright 2025 IEEE — All rights reserved. A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.