Close

Computing With Random Pulses Promises to Simplify Circuitry and Save Power

Stochastic computing may improve retinal implants, neural networks, and more

11 min read
Illustration by Mark Montgomery
Illustration: Mark Montgomery

In electronics, the past half century has been a steady march away from analog and toward digital. Telephony, music recording and playback, cameras, and radio and television broadcasting have all followed the lead of computing, which had largely gone digital by the middle of the 20th century. Yet many of the signals that computers—and our brains—process are analog. And analog has some inherent advantages: If an analog signal contains small errors, it typically won’t really matter. Nobody cares, for example, if a musical note in a recorded symphony is a smidgen louder or softer than it should actually be. Nor is anyone bothered if a bright area in an image is ever so slightly lighter than reality. Human hearing and vision aren’t sensitive enough to register those subtle differences anyway.

In many instances, there’s no fundamental need for electronic circuitry to first convert such analog quantities into binary numbers for processing in precise and perfectly repeatable ways. And if you could minimize those analog-to-digital conversions, you’d save a considerable amount of energy right there. If you could figure out how to process the analog signals in an energy-conserving fashion, you’ll be even further ahead. This feature would be especially important for situations in which power is very scarce, such as for biomedical implants intended to restore hearing or eyesight.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Medal of Honor Goes to Microsensor and Systems Pioneer

The UCLA professor developed aerospace and automotive safety systems

3 min read
Photo of a man in a blue jacket in front of a brick wall.
UCLA Samueli School of Engineering

IEEE Life Fellow Asad M. Madni is the recipient of this year’s IEEE Medal of Honor. He is being recognized “for pioneering contributions to the development and commercialization of innovative sensing and systems technologies, and for distinguished research leadership.”

Keep Reading ↓ Show less

Video Friday: An Agile Year

Your weekly selection of awesome robot videos

3 min read
Video Friday: An Agile Year

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRA 2022: 23–27 May 2022, Philadelphia
ERF 2022: 28–30 June 2022, Rotterdam, Germany
CLAWAR 2022: 12–14 September 2022, Açores, Portugal

Let us know if you have suggestions for next week, and enjoy today's videos.

Keep Reading ↓ Show less

Learn How to Use a High-Performance Digitizer

Join Teledyne for a three-part webinar series on high-performance data acquisition basics

1 min read

Webinar: High-Performance Digitizer Basics

Part 3: How to Use a High-Performance Digitizer

Date: Tuesday, December 7, 2021

Time: 10 AM PST | 1 PM EST

Keep Reading ↓ Show less