The July 2022 issue of IEEE Spectrum is here!

Close bar

Computing With Random Pulses Promises to Simplify Circuitry and Save Power

Stochastic computing may improve retinal implants, neural networks, and more

11 min read
Illustration by Mark Montgomery
Illustration: Mark Montgomery

In electronics, the past half century has been a steady march away from analog and toward digital. Telephony, music recording and playback, cameras, and radio and television broadcasting have all followed the lead of computing, which had largely gone digital by the middle of the 20th century. Yet many of the signals that computers—and our brains—process are analog. And analog has some inherent advantages: If an analog signal contains small errors, it typically won’t really matter. Nobody cares, for example, if a musical note in a recorded symphony is a smidgen louder or softer than it should actually be. Nor is anyone bothered if a bright area in an image is ever so slightly lighter than reality. Human hearing and vision aren’t sensitive enough to register those subtle differences anyway.

In many instances, there’s no fundamental need for electronic circuitry to first convert such analog quantities into binary numbers for processing in precise and perfectly repeatable ways. And if you could minimize those analog-to-digital conversions, you’d save a considerable amount of energy right there. If you could figure out how to process the analog signals in an energy-conserving fashion, you’ll be even further ahead. This feature would be especially important for situations in which power is very scarce, such as for biomedical implants intended to restore hearing or eyesight.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM's quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.
IBM

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner's guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM's publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or "qubits," which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

This Wearable Neck Patch Can Diagnose Concussions

Self-powered sensors convert neck strain into electrical pulses to detect head trauma in athletes

4 min read
image of back of man's head and shoulders with a patch taped to his lower neck; right image is a time lapse image of a man's head extending far forward and back, simulating a case of whiplash

The prototype patch in this research is shown in (a) on the left; on the right (b) is the kind of head rotation that can yield an electrical response from the patch.

Juan Pastrana

Nelson Sepúlveda was sitting in the stands at Spartan Stadium, watching his hometown Michigan State players bash heads with their cross-state football rivals from the University of Michigan, when he had a scientific epiphany.

Perhaps the nanotechnologies he had been working on for years—paper-thin devices known as ferroelectret nanogenerators that convert mechanical energy into electrical energy—could help save these athletes from the ravages of traumatic brain injury.

Keep Reading ↓Show less

Harnessing the Power of Innovation Intelligence

Through case studies and data visualizations, this webinar will show you how to leverage IP and scientific data analytics to identify emerging business opportunities

1 min read
Clarivate
Clarivate

Business and R&D leaders have to make consequential strategic decisions every day in a global marketplace that continues to get more interconnected and complex. Luckily, the job can be more manageable and efficient by leveraging IP and scientific data analytics. Register for this free webinar now!

Join us for the webinar, Harnessing the power of innovation intelligence, to hear Clarivate experts discuss how analyzing IP data, together with scientific content and industry-specific data, can provide organization-wide situational awareness and reveal valuable business insights.

Keep Reading ↓Show less