The December 2022 issue of IEEE Spectrum is here!

Close bar

Can Organics Replace Silicon in PV?

Photosynthesis is one approach to photovoltaics

4 min read

The U.S. Defense Advanced Research Projects Agency (Darpa) estimates that soldiers on a typical desert reconnaissance mission could cut their battery load in half by carrying portable photovoltaic cells and recharging them from the sun. Seeking solar chargers suitable for a backpack, military researchers are turning away from the inorganic semiconductors, like silicon, that rule the solar market to organic photovoltaics (PV) composed of carbon-based dyes and polymers. Organic materials could even displace the thin films expected until recently to provide PV's next generation.

Organic photovoltaics fit the bill because they weigh next to nothing, bend without breaking, and are showing rapidly improving efficiencies. Although their ability to convert photons into electricity must improve still more, the vision of solar plastics is moving rapidly toward realization, thanks to an R and D investment by the U.S. Department of Defense. "We're starting to make prototype devices to try out in the field," says Lynne Samuelson, who leads an organic PV research program at the U.S. Army's Natick Soldier Center, in Massachusetts.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less