Cars That Think iconCars That Think

An Uber self-driving autonomous vehicle seen driving in Tempe, Arizona on February 3, 2018.

Uber Robocar Kills Pedestrian, Despite Presence of Safety Driver

Update: Video from the car now suggests that the woman darted out in front of the car too quickly for either the car or the safety driver to react.  The San Francisco Chronicle interviewed Sylvia Moir, police chief in Tempe, Ariz., who said: “I suspect preliminarily it appears that the Uber would likely not be at fault in this accident.”

A self-driving Uber vehicle reportedly killed a pedestrian in Tempe, Ariz. last night, the first time such a thing has happened. The only other self-driving fatality—in May 2017—involved the driver of a Tesla that crashed into a truck.

Uber has not confirmed that the vehicle, a modified Volvo XC90 SUV, was in self-driving mode. However, the Tempe Police Department said, in a statement, that it “was in autonomous mode at the time of the collision, with a vehicle operator behind the wheel.” 

The National Transportation Safety Board says it’s opening an investigation of the case.

Safety drivers are supposed to intervene when the car engages in inappropriate behavior. At night, one might suppose that the car, equipped as it was with lidar, would have been just as able to detect a pedestrian as if it were high noon. A human driver might have had a harder time of it.

Read More
Truck drivers head toward Cheyenne, Wyo., in limited visibility at mile marker 373 on Interstate 80

SXSW 2018: Wyoming's Plan to Connect Semi Trucks and Reduce Traffic Deaths

The greatest benefit that self-driving cars could bring to humanity would be a reduction in traffic deaths. Policymakers, car company executives, and safety advocates look forward to the day when self-driving cars can dramatically reduce or eliminate the 3,400 deaths that occur every day because of traffic accidents.

But self-driving cars are only just starting to make their way onto public roads in the sunniest of U.S. suburbs. At this early stage, autonomous vehicles are still steering clear of hazards such as snow and ice that often cause human drivers to wreck.

This means self-driving cars won’t be able to save us from the most challenging driving conditions any time soon. But the state of Wyoming is moving forward with a pilot project that will use other technologies to improve the way humans drive, in an effort to reduce traffic deaths along a particularly deadly stretch of road.

Ali Ragan, a communications officer for the Wyoming Department of Transportation (WYDOT), spoke with IEEE Spectrum about the project at the 2018 South by Southwest Interactive conference in Austin, Texas.

Read More
Graphic of intersection with hazards labeled.

Watch Waymo's Virtual-Reality View of the World

Waymo, the robocar subsidiary of Alphabet, seems to be painting the walls and putting an apple pie in the oven before showing off its house to prospective buyers or partners.

I say that because the formerly rather secretive company had to put a lot of work into making this theater-in-the-round version of what its self-driving Chrysler Pacificas see as they motor around the metro area surrounding Phoenix, Ariz. 

You can use your mouse to drag the video through its 360 degrees of glory, but you’d be better off using a VR viewer or the YouTube app on your phone (while spinning yourself on a swivel chair).

Read More
GhostRider, a riderless motorbike built by a team of engineers led by Anthony Levandowski for the DARPA Grand Challenge in 2004.

GhostRider: The Self-Driving Motorbike That Launched Anthony Levandowski

Just because Waymo settled its high profile lidar trade secrets case against Uber earlier this month, it doesn’t mean Anthony Levandowski is out of the spotlight. The U.S. Justice Department could still file criminal charges against the ex-Waymo engineer for the alleged theft of technical documents from his former employer. And then there’s the question of what Levandowski is planning to do next: Will he use his vast experience with autonomous vehicles to launch another startup—and make a comeback?

During a deposition last April, Levandowski did not want his experience and plans scrutinized. When Waymo lawyers asked him hundreds of questions, mostly about his activities at Waymo and Uber, Levandowski took the Fifth, to avoid answering questions that might incriminate him. There was, however, one project he was eager to talk about: GhostRider.

Read More
Close up of a tire depth sensor in a tire

Printed Sensor Monitors Tire Tread in Real Time

A flexible, printed sensor that accurately measures tire wear in real time could warn drivers when the tread on their tires has gotten uneven or precariously thin. The sensor, made with carbon nanotube ink, spots millimeter-level changes in tire tread with 99 percent accuracy.

Today’s cars are laden with sensors that keep tabs on many variables including engine temperature and fuel pressure as well as environmental conditions and approaching obstacles. But there is no technology to monitor tire wear, says Duke University professor of electrical and computer engineering Aaron Franklin, who led the team that reported the new tire sensor in IEEE Sensors Journal last year.

The researchers’ spinout Tyrata, Inc. raised US $4.5 million from several investors last week. Franklin says the startup should have a sensor package that’s ready to go into cars by mid-2019. “The device is so simple and the need is so great since no existing competitor is available, that response from the industry has been astonishing,” he says.

The new tire sensor is simple: it consists of just two millimeter-scale electrodes that the researchers print on a plastic substrate using carbon nanotube ink. The device goes on the inside wall of a tire. An oscillating voltage is applied to one electrode and the other is grounded to create an electric field, part of which arcs over the electrodes and passes through the tire rubber. The sensor system measures the magnitude of the oscillating signal reflecting off the grounded electrode, which changes with slight changes in the rubber’s thickness.

Read More
Inside of a car showing Robotic Transforming Steering Wheel

Transforming Robotic Steering Wheel Is a Reminder That Your Car Needs You

Most of the autonomous vehicles that you’re likely to encounter in the near future are either Level 2 or Level 4 autonomous. Level 2, which you’ll find in a Tesla on the highway, means that the car drives itself in specific situations but expects you to be paying attention the entire time. Level 4 you might see in some experimental “fully autonomous” vehicles: They can drive themselves in specific areas when the conditions are good, and, like taxis, you sit in the back while they do all the driving no matter what happens.

There’s a reason that automotive companies have mostly skipped Level 3 autonomy: It puts a human in the loop sometimes, which is way worse than having a human in the loop either all of the time or not at all. To help us help our cars make safe, prompt transitions in and out of intermediate autonomous modes, researchers from Stanford University are experimenting with a robotic steering wheel that can physically transform, giving you a “cute little nudge” to help you pay attention when necessary.

Read More
Camera image showing side of a car with an approaching truck (designated by blue rectangle) and two cars (yellow rectangles)

AI-Aided Cameras Mean No More Car Mirrors, No More Blind Spots

According to the World Health Organization, more than 1.25 million people around the world die from road accidents each year. Consequently, the United Nations has set a target of halving this number by 2020. A new technology being readied for its debut could be a step forward in achieving that ambitious goal: greatly improved automotive video cameras meant to replace mirrors on vehicles.  

In its annual R&D Open House on 14 February, Mitsubishi Electric described the development of what it believes is the industry’s highest-performance rendition of mirrorless car technology. According to the company, today’s conventional camera-based systems featuring motion detection technology can detect objects up to about 30 meters away and identify them with a low accuracy of 14 percent. By comparison, Mitsubishi’s new mirrorless technology extends the recognition distance to 100 meters with an 81 percent accuracy.

“Motion detection can’t see objects if they are a long distance away,” says Kazuo Sugimoto, Senior Manager, at Mitsubishi Electric’s Image Analytics and Processing Technology Group, Information Technology R&D Center in Kamakura, 55 km south of Tokyo. “So we have developed an AI-based object-recognition technology that can instantly detect objects up to about 100 meters away.”

To achieve this, the Mitsubishi system uses two technology processes consecutively. A computational visual-cognition model first mimics how humans focus on relevant regions and extract object information from the background even when the objects are distant from the viewer.

The extracted object data is then fed to Mitsubishi's compact deep learning AI technology dubbed Maisart. The AI has been taught to classify objects into distinct categories: trucks; cars; and other objects such as lane markings. The detected results are then superimposed onto video that appears on a monitor for the driver to view. 

Currently, this superimposing results in objects being displayed with colored rectangles surrounding them. For instance, a blue rectangle designates an approaching truck, a yellow rectangle an oncoming car. “But this can be done in a number of ways,” says Sugimoto. “We are now testing out various ideas to find the best method for drivers.”

He emphasizes that the modeling employs relatively simple algorithms so that even when combined with the processing of the compact AI system, detection takes place in real-time. And because drivers get advance warning of approaching vehicles in real time, they can make better decisions on when to change lanes, which should help reduce accidents.

Sugimoto notes that Mitsubishi still has work to do in improving the system so that it works better in bad weather conditions, during night driving, and on winding roads. “We also believe we can increase the recognition accuracy further by interpolating time-series data into the process,” he adds.

The Japanese government is eager to promote Japanese autonomous driving technology and wants to see driverless cars on the roads in time for the Tokyo Olympics in 2020. Consequently, Japan became one of the first counties to make mirrorless cars legal when it updated its laws in July 2016. Europe soon followed its lead. According to Sugimoto, the first commercial mirrorless cars are expected to appear on roads in Japan next year.

Drag from the big rack atop this Waymo autonomous vehicle makes it an energy hog

Exposing the Power Vampires in Self-Driving Cars

By driving smarter, autonomous cars have the potential to move people around and between cities with far greater efficiency. Estimates of their energy dividends, however, have largely ignored autonomous driving’s energy inputs, such as the electricity consumed by brawny on-board computers.

First-of-a-kind modeling published today by University of Michigan and Ford Motor researchers shows that autonomy's energy pricetag is substantial — high enough to turn some autonomous cars into net energy losers.

"We knew there was going to be a tradeoff in terms of the energy and greenhouse gas emissions associated with the equipment and the benefits gained from operational efficiency. I was surprised that it was so significant,” says to Greg Keoleian, senior author on the paper published today in the journal Environmental Science & Technology and director of the University of Michigan Center for Sustainable Systems

Keoleian’s team modeled both conventional and battery-electric versions of Ford's Focus sedan carrying sensing and computing packages that enable them to operate without human oversight under select conditions. Three subsystems were studied: small and medium-sized equipment packages akin to those carried by Tesla's Model S and Ford's autonomous vehicle test platform, respectively, and the far larger package on Waymo's Pacifica minivan test bed [photo above]. 

For the small and medium-sized equipment packages, going autonomous required 2.8 to 4.0 percent more onboard power. This went primarily to power the computers and sensors, and secondarily to the extra 17-22 kilograms of mass the equipment contributed.

However, autonomy’s energy bill ate up only part of the overall energy reduction expected from the autonomous vehicles’ ability to drive smarter driving — such as platooning of vehicles through intersections and on highways to cut congestion in cities and aerodynamic drag on the highway. As a result the modeled Ford sedans still delivered a 6-9 percent net energy reduction over their life cycle with autonomy added, and promised a comparable reduction in greenhouse gas emissions.

EV and gas models offered comparable results. Adding equipment was less burdensome for the EVs, which provided extra power for the processors and sensors more efficiently than a gas vehicle. But autonomy delivered a slightly larger net energy reduction in the gas vehicles, whose relatively inefficient drivetrains should benefit more from smart driving.

In contrast adding the large Waymo equipment package yielded a comparatively dark picture for the modeled EVs and gasoline-fueled sedans. The larger equipment increased net energy consumption on the Ford sedans by 5 percent, thanks mostly to the aerodynamic drag induced by its rooftop sensors. 

Keoleian says this modeling result likely overstates real impacts from future autonomous vehicles, which he expects will manage to streamline even substantial sensors arrays. What concerns him more is the likelihood that all of the modeled packages understate power consumption by future autonomous driving subsystems. 

For instance, Keoleian says future autonomous vehicles may employ street maps of far higher resolution than those used today to ensure the safety of pedestrians, cyclists and other drivers. In fact, real-time updating of high-definition maps by autonomous cars is one of the applications pushing the development of next-generation 5G wireless data networks. 

Higher-bandwidth data transmission via today's 4G network could boost power consumption by onboard computers by one third or more according to Keoleian and his coauthors. It is premature, they write in today's study, to judge the power consumption associated with 5G. 

Another concern for Keoleian are the indirect effects of introducing autonomous vehicles. By making driving more convenient, for example, smart cars could encourage longer commutes. "There could be a rebound effect. They could induce travel, adding to congestion and fuel use,” says Keoleian. 

Such indirect effects of smart cars could either slash energy consumption from driving by 60 percent, or increase it by 200 percent, according to a 2016 study by the U.S. National Renewable Energy Laboratory. Guiding the technology’s development to avoid an energy demand explosion, says Keoleian, will require a lot more study.

Photo-illustration of Nissan's self-parking hotel slippers.

Nissan Embeds Self-Parking Tech in Pillows and Slippers

Nissan, like every other car manufacturer that doesn't want to be rendered mostly obsolete within the next few decades, has been gradually developing autonomous technology for its vehicles. They've been going about it very sensibly, introducing discrete modules like highway assist and parking assist, and they've managed to get the parking bit working well enough to take it beyond cars. One such attempt at an even more challenging and important self-parking application: slipper arrangements.

Read More
Photo-illustration of an autonomous car with the driver about to engage with the wheel.

Have Self-Driving Cars Stopped Getting Better

Every January, the California Department of Motor Vehicles (DMV) releases data from companies that operated highly automated vehicles on the state’s public roads the previous year. By law, each company must report how many times a safety driver took control from an autonomous vehicle, either because the system had failed or because the human was worried it had.

Companies get to decide how to record these so-called disengagements. In 2017, for instance, relative newcomer Nvidia logged every single time a human touched the steering wheel of its test vehicle, even at the planned end of a test. Waymo, on the other hand, ran complex computer simulations after each disengagement, and only reported to the DMV those where it believed the driver was correct to take charge, rather than being overly-cautious. GM chose not to report at least one instance where an autonomous car was about to block an intersection.

Read More

Cars That Think

IEEE Spectrum’s blog about the sensors, software, and systems that are making cars smarter, more entertaining, and ultimately, autonomous.
Contact us:

Philip E. Ross
New York City
Willie D. Jones
New York City
Senior Writer
Evan Ackerman
Washington, D.C.
Mark Harris

Newsletter Sign Up

Sign up for the Cars That Think newsletter and get biweekly updates, all delivered directly to your inbox.

Load More