Beyond Bitcoin: China’s Surveillance Cash

As bills and coins fade away, so does financial privacy

2 min read
Illustration of a wallet with 1's and 0's coming out.
Illustration: Greg Mably

Of all the technological revolutions we’ll live through in this next decade, none will be more fundamental or pervasive than the transition to digital cash. Money touches nearly everything we do, and although all those swipes and taps and PIN-entry moments may make it seem as though cash is already digital, all of that tech merely eases access to our bank accounts. Cash remains stubbornly physical. But that’s soon going to change.

As with so much connected to digital payments, the Chinese got there first. Prompted by the June 2019 public announcement of Facebook’s Libra (now Diem)—the social media giant’s private form of digital cash—the People’s Bank of China unveiled Digital Currency/Electronic Payments, or DCEP. Having rolled out the new currency to tens of millions of users who now hold digital yuan in electronic wallets, the bank expects that by the time Beijing hosts the 2022 Winter Olympics, DCEP will be in widespread use across what some say is the world’s biggest economy. Indeed, the bank confidently predicts that by the end of the decade digital cash will displace nearly all of China’s banknotes.

Unlike the anarchic and highly sought-after Bitcoin—whose creation marked the genesis of digital cash—DCEP gives up all its secrets. The People’s Bank records every DCEP transaction of any size across the entire Chinese economy, enabling a form of economic surveillance that was impossible to conceive of before the advent of digital cash but is now baked into the design of this new kind of money.

China may have been first, but nearly every other major national economy has its central bankers researching their own forms of digital cash. That makes this an excellent moment to consider the tensions at the intersection of money, technology, and society.

Nearly every country tracks the movement of large sums of money in an effort to thwart terrorism and tax evasion. But most nations have been content to preserve the anonymity of cash when the amount conveyed falls below some threshold. Will that still be the case in 2030, or will our money watch us as we spend it? Just because we can use the technology to create an indelible digital record of our every transaction, should we? And if we do, who gets to see that ledger?

Digital cash also means that high-tech items will rapidly become bearers of value. We’ll have more than just smartphone-based wallets: Our automobiles will pay for their own bridge tolls or the watts they gulp to charge their batteries. It also means that such a car can be paid directly if it returns some of those electrons to the grid at times of peak demand. Within this decade, most of our devices could become fully transactional, not just in exchanging data, but also as autonomous financial entities.

Pervasive digital cash will demand a new ecosystem of software services to manage it. Here we run headlong into a fundamental challenge: You can claw back a mistaken or fraudulent credit card transaction with a charge-back, but a cash transfer is forever, whether that’s done by exchanging bills or bytes. That means someone’s buggy code will cost someone else real money. Ever-greater attention will have to be paid to testing, before the code managing these transactions is deployed. Youthful cries of “move fast and break things” ring hollow in a more mature connected world where software plays such a central role in the economy.

This article appears in the February 2021 print issue as “Surveillance Cash.”

The Conversation (0)

The Future of Deep Learning Is Photonic

Computing with light could slash the energy needs of neural networks

10 min read

This computer rendering depicts the pattern on a photonic chip that the author and his colleagues have devised for performing neural-network calculations using light.

Alexander Sludds
DarkBlue1

Think of the many tasks to which computers are being applied that in the not-so-distant past required human intuition. Computers routinely identify objects in images, transcribe speech, translate between languages, diagnose medical conditions, play complex games, and drive cars.

The technique that has empowered these stunning developments is called deep learning, a term that refers to mathematical models known as artificial neural networks. Deep learning is a subfield of machine learning, a branch of computer science based on fitting complex models to data.

Keep Reading ↓ Show less