The October 2022 issue of IEEE Spectrum is here!

Close bar

A Tower of Molten Salt Will Deliver Solar Power After Sunset

For the first time, solar thermal can compete with natural gas during nighttime peak demand

3 min read
A Tower of Molten Salt Will Deliver Solar Power After Sunset
Pillar Of Salt: More than a million square meters of mirrors focus on a tower of molten salt to generate power for the Las Vegas Strip.
Photo: SolarReserve

Solar power projects intended to turn solar heat into steam to generate electricity have struggled to compete amid tumbling prices for solar energy from solid-state photovoltaic (PV) panels. But the first commercial-scale implementation of an innovative solar thermal design could turn the tide. Engineered from the ground up to store some of its solar energy, the 110-megawatt plant is nearing completion in the Crescent Dunes near Tonopah, Nev. It aims to simultaneously produce the cheapest solar thermal power and to dispatch that power for up to 10 hours after the setting sun has idled photovoltaics.

“When the grid wants 110 MW, we’ll provide 110 MW. There will be no variability,” says Kevin Smith, CEO for SolarReserve, the plant’s developer, based in Santa Monica, Calif.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less