CES 2017: Little-Known Elliptic Labs Could Reshape the Smartphone Industry

A Sony Android smartphone, a Mi Mix smartphone, and an iPhone placed side by side, showing the larger screen of the Mi Mix
Photo: Amy Nordrum
The Mi Mix [center], compared with phones from Sony and Huawei, showing the greater proportion of space that smartphone screens can occupy when the proximity sensor is eliminated.

This year at CES, a little-known company with no booth or speaker slot is quietly talking about a technology that could bring about one of the most visible changes to smartphone design of 2017. It has developed software that would let manufacturers remove a common component and so create almost-edgeless smartphone screens that run up to the very top of the device. And in the past three months, this company has been contacted by every major smartphone manufacturer in the world.

Let’s back up for a moment. On your smartphone right now, there’s probably a little dot or narrow sliver right above your screen that’s a proximity sensor. When you make a call and place the phone to your ear, the screen turns off to save power and prevent you from accidentally hitting buttons with your cheek. It does this by emitting infrared waves and then measuring their reflections to determine how close the phone is to your head.

The original iPhone, released in 2007, was the first smartphone to use a proximity sensor. Since then, the proximity sensor has become a standard mobile component. It’s typically housed in a rectangular bit of casing that takes up about half a centimeter or so of real estate across the top of the screen.

But this staple of smartphone design may be on its way out. In October 2016, Xiaomi announced the Mi MIX, which features a display that runs right up to the top edge of the device, with no proximity sensor in sight. Reviewers raved about the almost-edgeless display and applauded Xiaomi’s ingenuity. Some even hinted that Apple and Samsung would be taking cues from the Mi MIX for their highly anticipated releases of the iPhone 8 and Galaxy S8 in 2017.

Though Xiaomi got the credit, the company behind that almost-edgeless display was Elliptic Labs. And according to an Elliptic representative who spoke with IEEE Spectrum here at CES in Las Vegas, consumers should expect to see many more almost-edgeless smartphone screens debut this year, all inspired by the Mi MIX design.

“Ever since this phone has been released, all the mobile OEMs [original equipment manufacturers] have been contacting us,” said Angelo Assimakopoulos, VP of sales and business development for Elliptic Labs. “Without naming names, I can tell you almost everyone is going this route.”

Elliptic Labs sells software that generates ultrasound pulses from a smartphone’s speaker and measures them using its microphone, as an alternative method to proximity detection. This technique allows manufacturers to get rid of traditional proximity sensors altogether, and so stretch the display all the way to the phone’s upper edge. Ultrasound may also prove more reliable for consumers, since proximity sensors can be affected by smudges or bright light.

The pulses that Elliptic generates are between 30 kilohertz to 40 kHz, well above the 20 kHz limit of human hearing. Assimakopoulos says most smartphone speakers can generate pulses at these frequencies, though the company finds that MEMS speakers work best for generating them.

The company, which has about 30 employees and operations in the United States, Norway, and China, has worked on its software for almost 10 years. Now, they think conditions are favorable to roll it out. Consumers are watching more videos and playing more games on their smartphones than ever before. In response, manufacturers are producing phones with larger screens and maximizing every square millimeter of space. For example, Samsung has increasingly displayed content along the sides of screens. An obvious next step may be to expand the screen from the phone’s top to bottom, with Elliptic’s help.

By using their software, Elliptic’s Assimakopoulos estimates that smartphone manufacturers could increase screen area to between 90 to 95 percent of the phone’s facing side, from the standard 75 to 80 percent on most smartphones today. The Mi MIX has a screen-to-face radio of 91.3 percent.

Elliptic’s technology alone won’t allow manufactures to create entirely edgeless (or, as they’re known in the industry, “bezel-free”) designs, though. Aside from the proximity sensor, several other components such as the home button, camera, and speaker still live on the face of most smartphones.

It’s hard to say whether Elliptic’s technology would lower the cost of manufacturing a smartphone, or add to it. On one hand, it replaces the proximity sensor with software that uses existing hardware. This also frees up some space inside the phone, since the proximity sensor, which itself measures approximately 3 by 2 millimeters, can be removed. On the other hand, manufacturers must pay to license the software, and installing a larger liquid-crystal display adds to a phone’s cost.

Now that Elliptic is drawing attention from manufacturers, Assimakopoulos hopes to work with as many partners as possible by licensing their patented software. He declined to comment on whether Elliptic might also be a candidate for acquisition, which would allow one company to keep their system from competitors. “We’re talking to several OEMs,” he said. “I will tell you that all OEMs have approached us inquiring about our technology since this phone was released.”

Though Assimakopoulos was hush-hush on the details of his conversations with manufacturers, he’s very confident that you’ll be seeing more almost-edgeless smartphone screens very soon. “There will be another phone that shows up this year with this technology,” he said.   

Advertisement

Tech Talk

IEEE Spectrum’s general technology blog, featuring news, analysis, and opinions about engineering, consumer electronics, and technology and society, from the editorial staff and freelance contributors.

Newsletter Sign Up

Sign up for the Tech Alert newsletter and receive ground-breaking technology and science news from IEEE Spectrum every Thursday.

Advertisement