Automaton iconAutomaton

Agressive quadrotor

Aggressive Quadrotors Conquer Gaps With Ultimate Autonomy

Just a few weeks ago, we posted about some incredible research from Vijay Kumar’s lab at the University of Pennsylvania getting quadrotors to zip through narrow gaps using only onboard localization. This is a big deal, because it means that drones are getting closer to being able to aggressively avoid obstacles without depending on external localization systems. The one little asterisk to this research was that the quadrotors were provided the location and orientation of the gap in advance, rather than having to figure it out for themselves.

Yesterday, Davide Falanga, Elias Mueggler, Matthias Faessler, and Professor Davide Scaramuzza, who leads the Robotics and Perception Group at the University of Zurich, shared some research that they’ve just submitted to ICRA 2017. It’s the same kind of aggressive quadrotor maneuvering, except absolutely everything is done on board, including obstacle perception. It doesn’t get any more autonomous than this.

Read More
Pepper humanoid robot

Video Friday: LEGO Drone Kits, Robots in the Desert, and Pepper Learns New Tricks

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here’s what we have so far (send us your events!):

Gigaom Change – September 21-23, 2016 – Austin, Texas, USA
RoboBusiness – September 28-29, 2016 – San Jose, Calif., USA
HFR 2016 – September 29-30, 2016 – Genoa, Italy
ISER 2016 – October 3-6, 2016 – Tokyo, Japan
Cybathlon Symposium – October 07, 2016 – Zurich, Switzerland
Cybathalon 2016 – October 08, 2016 – Zurich, Switzerland
Robotica 2016 Brazil – October 8-12, 2016 – Recife, Brazil
ROSCon 2016 – October 8-9, 2016 – Seoul, Korea
IROS 2016 – October 9-14, 2016 – Daejon, Korea
NASA SRC Qualifier – October 10-10, 2016 – Online
ICSR 2016 – November 1-3, 2016 – Kansas City, Kan., USA
Social Robots in Therapy and Education – November 2-4, 2016 – Barcelona, Spain


Let us know if you have suggestions for next week, and enjoy today’s videos.


Read More
BIG-i personal home robot

BIG-i Social Home Robot Has a Big Eye, Launches on Kickstarter

In case you haven’t yet managed to find the perfect social robot for your home, this is BIG-i. BIG-i is going to stare at you without blinking until you decide that you want it. Watching, always watching. Seriously though, BIG-i should get your attention if for no other reason than it’s a design that’s completely different (and significantly softer) than anything we’ve seen before. It’s also mobile, with what looks to be a simple and useful if-this-then-that-style verbal programming. The Kickstarter just Kickstarted off and has already just about reached its goal, but if giant eyeballs are your thing (and let’s be honest, everyone has a thing for giant eyeballs), this robot is probably worth a look.

Read More
Delftacopter delivery drone

TU Delft's Newest Tailsitter Drone Is Designed for Outback Delivery

Drone designs are usually a choice between flexibility and endurance. You can either go with a multirotor that’ll let you hover and make pinpoint landings, or you can go with a flying wing, which can handle bigger payloads and longer ranges. Finding a compromise is difficult, and usually, it’s also very messy. Amazon and Google, for example, are both working on delivery drones that have a whole bunch of frequently superfluous motors and propellers that help the drone to transition between hovering and efficient forward flight. 

Delft University of Technology in the Netherlands has a history of managing to make successful drones that combine the best features of VTOL and fixed-wing flight. With their latest aircraft, they’re going old-school, with a biplane that can also take off and land vertically. The Delftacopter (get it?) is designed for outback delivery: not the steakhouse, sadly, but the mostly empty part of Australia, where the TU Delft team is testing its drone.

Read More
Ghost Robotics Minitaur quadruped robot

Ghost Robotics' Minitaur Quadruped Conquers Stairs, Doors, and Fences and Is Somehow Affordable

Bipedal and quadrupedal locomotion has been an ongoing challenge for robots. There’s been a lot of progress over the last few years, though, especially when it comes to dynamic motions: not just walking without falling over but also climbing, running, jumping, and more. This is the real value of legs: They enable robots to deal with the kinds of obstacles and terrain and situations that wheels and tracks can’t.

Getting quadrupeds to do these kinds of useful and fun things requires that a) you know what you’re doing and b) you have a robot that can do what you want it to do. Unfortunately, building legged quadrupeds is difficult, expensive, and time consuming. There is a small handful of bespoke research quadrupeds doing some very good work, but for the rest of us, having to actually do all of the hardware stuff is a major obstacle that makes it difficult to focus on the software, which is where the potential for real-world applications comes in.

In Professor Dan Koditschek’s lab at the University of Pennsylvania, Avik De and Gavin Kenneally put a lot of work into developing their own quadruped robot, called Minitaur. It’s a small but very capable platform that uses innovative direct-drive electric motors for a lot of power, virtual compliance, and integrated sensing. Minitaur was introduced this past July in an article in IEEE Robotics and Automation Letters, and there’s been enough interest in this little guy that Kenneally and De have started a company called Ghost Robotics to make sure that Minitaur is affordably available to anyone who wants one.

Read More
Boston Dynamics' Atlas humanoid robot climbing stairs

Video Friday: Faceless Humanoid, Robot Inside Eyeball, and Marc Raibert on Robotic Progress

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here’s what we have so far (send us your events!):

Gigaom Change – September 21-23, 2016 – Austin, Texas, USA
RoboBusiness – September 28-29, 2016 – San Jose, Calif., USA
HFR 2016 – September 29-30, 2016 – Genoa, Italy
ISER 2016 – October 3-6, 2016 – Tokyo, Japan
Cybathlon Symposium – October 07, 2016 – Zurich, Switzerland
Cybathalon 2016 – October 08, 2016 – Zurich, Switzerland
Robotica 2016 Brazil – October 8-12, 2016 – Recife, Brazil
ROSCon 2016 – October 8-9, 2016 – Seoul, Korea
IROS 2016 – October 9-14, 2016 – Daejon, Korea
NASA SRC Qualifier – October 10-10, 2016 – Online
ICSR 2016 – November 1-3, 2016 – Kansas City, Kan., USA
Social Robots in Therapy and Education – November 2-4, 2016 – Barcelona, Spain
Distributed Autonomous Robotic Systems 2016 – November 7-9, 2016 – London, England


Let us know if you have suggestions for next week, and enjoy today’s videos.


Read More
Toyota Partner Robot

OSRF Forms New Corporation, Partners With Toyota Research

Today, the Open Source Robotics Foundation announced a whole bunch of stuff, including a big pile of money from Toyota Research, what is probably an even bigger pile of money from Toyota Research, and the formation of the for-profit Open Source Robotics Corporation. That last thing might sound a little worrisome, since corporation-ness and open source-itude are often at odds, but we checked in with OSRF CEO Brian Gerkey, who explained how it’s all going to work.

Read More
Eagle vs drone

Dutch Police Buy Four Eagle Chicks for Anti-Drone Flying Squad

For the past year, the Dutch National Police and raptor training company Guard From Above have been investigating whether eagles could be an effective way of dealing with potentially dangerous drones. The trials have been a resounding success, Dutch police officials said, and today they announced that they’re ready to operationally deploy an anti-drone team of specially trained bald eagles and their human partners.

Read More
Aggressive quadrotor can fly and avoid obstacles using only onboard sensors and computation.

Aggressive Quadrotors Zip Through Narrow Windows Without Any Help

Quadrotors are capable of doing some incredible stunts, like flying through narrow windows and thrown hoops. Usually, when we talk about quadrotors doing stuff like this, we have to point out that there are lots of very complicated and expensive sensors and computers positioned around the room doing all of the hard work, and the quadrotor itself is just following orders.

Vijay Kumar’s lab at the University of Pennsylvania is often responsible for some of the most spectacular quadrotor stunts, but their latest research is some of the most amazing yet: They’ve managed to get quadrotors flying through windows using only onboard sensing and computing, meaning that no window is safe from a quadrotor incursion. None. Anywhere. You’ve been warned.

Read More
Advertisement

Automaton

IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, drones, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
 
Senior Writer
Evan Ackerman
 
 
Contributor
Jason Falconer
Contributor
Angelica Lim
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Advertisement
Load More