Automaton iconAutomaton

Video Friday: Atlas Kicked, Tea-Brewing Robot, and Rodney Brooks's Giant Brains

We love robot competitions, and the only bad thing about them is that we don’t have the time (and, er, travel budget) to cover them all. The biggest robotics event happening this week was RoboCup, in Hefei, China, and we have some videos of that for you. But first, let’s watch a 150-kilogram robot getting kicked, shall we?


Read More

Windbot Could Float Through the Clouds of Jupiter

Sending a robotic lander to Jupiter is probably not a good idea. There’s a rocky core down there somewhere, encased by metallic hydrogen and covered by an ocean of supercritical hydrogen, so technically, there is somewhere to land. But even if your lander made it all the way down there (which it probably wouldn’t for a variety of reasons), you’d be squished and fried and not even able to see anything while it was happening.

So let’s not do that.

Instead of thinking of Jupiter as totally inhospitable, let’s take a page from this Venus playbook, and aim for exploration of the atmosphere instead, with a robot that floats in the clouds and harvests energy from the wind.

Read More

NASA Tests New Robotic Refueling Hardware on International Space Station

Sending up one satellite is expensive. Sending up another satellite to replace the first satellite when it breaks is even more expensive. It would be crazy to junk your car every time it needs a new tank of gas, but that’s basically what we do with satellites right now, and it’s incredibly wasteful. NASA has an entire office dedicated to fixing this problem, called the Satellite Servicing Capabilities Office (SSCO), and last week, they tested out some new robotic hardware for on-orbit satellite repair up on the International Space Station.

Read More

Mother Robots Build Children Robots to Experiment With Artificial Evolution

When designing a brand new robot, it’s usually a good idea to design and test it in simulation first, to get a sense of how well your design is going to work. But even a successful simulated robot will only provide you limited insight into how it’s going to do when you actually build it: as we’ve seen, even sophisticated simulations don’t necessarily reveal how robots will perform in the real world.

This fundamental disconnect between simulation and reality becomes especially problematic when you’re dealing with an area of robotics where it’s impractical to build physical versions of everything. Evolutionary robotics is a very good example of this, where robot designs are tested and iterated over hundreds (or thousands) of generations: it works great in simulation (if you have a fast computer), but is much harder to do in practice. However, with something like evolutionary robotics, we come back to the original issue, which is that a robot that has evolved to work well in simulation may not work well at all out of simulation, which throws into question the value of iterating on the fitness of a robot through simulation at all.

In a paper published last month in PLOS ONE, Luzius Brodbeck, Simon Hauser, and Fumiya Iida from the Institute of Robotics and Intelligent Systems at ETH Zurich took things one step further by teaching a “mother robot” to autonomously build children robots out of component parts to see how well they move, doing all of the hard work of robot evolution without any simulation compromises at all.

Read More

First FAA-Approved Drone Delivery Is a Success, but Does It Matter?

Flirtey is a company that’s working to commercialize the consumer delivery drone, which is something that we’ve been very, very skeptical about. On Friday, Flirtey partnered with Virginia Tech and the U.S. Federal Aviation Administration to conduct the very first officially-approved drone delivery in the United States. Flirtey called it a “Kitty Hawk moment” for the entire delivery drone industry, but we’re not so sure.

Read More

Video Friday: Bacteria Driving Robot, Drone With Gun, and Freaky Snakebot

It is the height of summer (at least in my hemisphere), and many of you are enjoying a nice and relaxing vacation. But don’t get too relaxed, people: it’s not too early to start looking forward to fall robotics events. IROS 2015 will be in Hamburg, Germany this year, and it will be followed immediately by ROSCon right next door. Come the end of September, Hamburg is going to be the most exciting place in robotics. Right now, though, the most exciting place in robotics is right here, for Video Friday.

Read More

Robotic Construction Gets Fancy at ETH Zurich's Digital Fabrication Lab

Last week, we wrote about some robots that are making construction more efficient by automating work with bricks and concrete. At ETH Zurich, the Swiss National Science Foundation (through the National Centres of Competence in Research) has just opened a Digital Fabrication lab that’s exploring what else is possible with construction autonomy, and they’ve come up with some very cool ideas.

Read More

ReWalk Robotics's New Exoskeleton Lets Paraplegic Stroll the Streets of NYC

Yesterday, a paralyzed man strapped on a pair of robotic legs and stepped out a hotel door, joining the flow of rushing pedestrians on a sidewalk in midtown Manhattan.

The user, Robert Woo, was demonstrating a new exoskeleton unveiled this week, the ReWalk Personal 6.0 from Israel’s ReWalk Robotics. He got a few curious looks as he strode forward in his sleek black gear, but the fast-walking New Yorkers didn’t slow down or clear space for him.

Read More

Mobile Robots and RFID Tags Internet-of-Things-ify the Outdoors

Most of the time, mobile robots do useful things thanks to remote sensing systems. That is, they have cameras, radar, ultrasound, LIDAR, or other ways of finding stuff about the world around them. That’s great, but there are all kinds of applications that require more direct forms of sensing: namely, sensors that are in direct contact with the thing that you want to sense. Mobile robots can carry around probes and whatnot to make measurements like this, but that’s difficult and time consuming.

For example, let’s imagine a completely hypothetical scenario: we live in California, and we’re trying to grow some food in a field, but we barely have any water. In order to grow plants most efficiently, we’d want to be able to measure moisture levels in the soil to make sure that we’re not over or under watering. Assuming that we’re looking for a better solution than a human to walk around probing the soil all the time, we could try to have a mobile robot do the same thing, but that can be tricky and probably expensive. Another option might be to put sensors in the ground all around the field, but then you’ve got to buy the sensors, power them, and do some sort of fancy wireless thing to get them all reporting back.

In a paper recently posted on arXiv, a team of researchers has proposed a hybrid approach using long-range UHF RFID sensors that are dirt cheap and require no power source, combined with a mobile robot that can talk to them. Is it the best of both worlds? Yes. And does it work? Yes. It does. Maybe.

Read More

NASA’s TransFormers Could Make Harsh Lunar Environments Robot Friendly

Right now, planetary rovers have two options for power: a solar-based power system or a radioisotope thermoelectric generator (RTG). Solar is common because it’s cheap, reliable, and will run almost indefinitely. RTGs are expensive and bulky, but they provide a lot of power and will do so reliably for decades.

The problem with solar power, and it’s a huge problem, is that there are all sorts of situations in which it simply does not work, nighttime being the one you’re most familiar with. In more exotic environments (like Mars) solar-powered robots have suffered from dust as well as from inadequate power during the winter, or while they’re traversing slopes that tilt them away from direct sunlight. And there are lots of places that solar-powered robots cannot go, including caves and other areas that are permanently shadowed.

Does this mean that to explore these places, we need to send in big, expensive robots with big, expensive RTGs? Maybe not. Maybe we can instead transform the areas that we want to explore into ones that are more favorable for exploration by using robots with mirrors to turn permanent night into permanent day.

Read More
Advertisement

Automaton

IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
New York, N.Y.
Senior Writer
Evan Ackerman
Berkeley, Calif.
 
Contributor
Jason Falconer
Canada
Contributor
Angelica Lim
Tokyo, Japan
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Advertisement
Load More