Automaton iconAutomaton

AI

Industry Urges United Nations to Ban Lethal Autonomous Weapons in New Open Letter

Today (or, yesterday, but today Australia time, where it's probably already tomorrow), 116 founders of robotics and artificial intelligence companies from 26 countries released an open letter urging the United Nations to ban lethal autonomous weapon systems (LAWS). This is a follow-up to the 2015 anti-"killer robots" UN letter that we covered extensively when it was released, but with a new focus on industry that attempts to help convince the UN to get something done.

Read More
Robotarium

Video Friday: AI vs. Dota 2, Cassie gets Bored, and Georgia Tech's Robotarium

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here's what we have so far (send us your events!):

IEEE CASE 2017 – August 20-23, 2017 – Xi'an, China
IEEE ICARM 2017 – August 27-31, 2017 – Hefei, China
IEEE RO-MAN – August 28-31, 2017 – Lisbon, Portugal
CLAWAR 2017 – September 11-13, 2017 – Porto, Portugal
FSR 2017 – September 12-15, 2017 – Zurich, Switzerland
Singularities of Mechanisms and Robotic Manipulators – September 18-22, 2017 – Johannes Kepler University, Linz, Austria
ROSCon – September 21-22, 2017 – Vancouver, B.C., Canada
IEEE IROS – September 24-28, 2017 – Vancouver, B.C., Canada
RoboBusiness – September 27-28, 2017 – Santa Clara, Calif., USA
Drone World Expo – October 2-4, 2017 – San Jose, Calif., USA

Let us know if you have suggestions for next week, and enjoy today's videos.


Read More
S-MAD

Reliable Perching Makes Fixed-Wing UAVs Much More Useful

UAV designs are a perpetual compromise between the ability to fly long distances efficiently with payloads (fixed-wing) and the ability to maneuver, hover, and land easily (rotorcraft). With a very few rather bizarre exceptions, any aircraft that try to offer the best of both worlds end up relatively complicated, inefficient, and expensive. The ideal fantasy UAV would be a fixed-wing aircraft with the magical ability to land on a dime, and a group of researchers from the University of Sherbrooke in Canada have come very close to making that happen, with a little airplane that uses legs and claws to reliably perch on walls.


The majority of the perching robots that we've seen are quadrotors. Perching with a quadrotor is significantly easier than perching with a fixed-wing aircraft, because you have many more degrees of control, and you're not obligated to keep the vehicle moving forward all the time. There are certainly quadrotors that take more creative approaches to perching, but it's also worth noting that perching is less valuable to quadrotors, since they can hover and land relatively easily. 

Fixed-wing perching is a more difficult problem, since perching generally requires the vehicle to be very close to stationary to keep it from just bouncing off of whatever surface it's trying to land on. Airplanes are not happy with being stationary in mid air, and will usually stall as soon as air stops moving over their wings, because that's where the majority of their lift comes from. If you're very (very) careful, you can time this stall to coincide exactly with your perch target: that is how MIT's powerline perching glider works.

Dino Mehanovic, John Bass, Thomas Courteau, David Rancourt, and Alexis Lussier Desbiens from the University of Sherbrooke realized that perching with a fixed-wing aircraft doesn't need to involve a stall to achieve that vertical and ultra low-speed approach, as long as you can maintain control over the aircraft. Birds do this all the time, in fact, by using the thrust from their wings to controllably approach objects slow enough to enable a comfortable perch. Sherbrooke's Multimodal Autonomous Drone (S-MAD) uses a similar thrust-assisted landing technique (along with some microspine feet) to reliably perch on walls, and then take off again:

S_MAD

There are several tricks to this. The first trick is the pitch-up maneuver, which turns the fixed-wing airplane into a temporary helicopter of sorts, relying entirely on the propellor for lift generation (the thrust to weight ratio is 1.5) while the wings provide enough of a control surface to cancel out the torque. At that point, the UAV can approach the wall as slowly as you like (using a laser rangefinder for wall detection), which leads to the second trick: maximizing the “zone of suitable touchdown conditions,” or making sure that the approach is slow enough and steady enough that you can perch reliably with little hardware (sensing and otherwise). And the third trick is having a perching system, legs and microspines in this case, that are flexible enough to achieve a robust perch even if the aircraft isn't doing exactly what you'd like it to be doing.

In indoor testing, S-MAD went 20 for 20 in successful perching experiments, which is pretty good even though the environment was (we assume) very tightly controlled. Future work will include adding some sensors to help with the final phase of wall contact, and also working on thrust-assisted wall climbing, managing aborted approaches, and recovering from perch attempts where the microspines don't grab onto the wall properly. If they can put all of this together, and get it to work robustly outdoors on different surfaces and under different conditions, S-MAD (or UAVs like it) could become the go-to systems whenever you need an efficient and reliable long-range, long-duration platform that can also pull over onto the nearest wall or tree trunk from time to time.

For more details, we spoke with Alexis Lussier Desbiens via email.

IEEE Spectrum: Can you explain what makes S-MAD unique among perching robots (or winged perching robots specifically) and why the capabilities that it offers are important?

Alexis Lussier Desbiens: It is true that there are now quite a few great quadcopters that can perch on various surfaces, smooth or rough. We still like fixed-wing though. They are particularly efficient in flight, and could move much faster between perching sites.

We know of only two other fixed-wing perching airframes: the sticky-pad plane (Anderson et al., 2009) and the dart mechanism (Kovac et al., 2009). Both of these systems work well at small scales. However, as scale is increased, the flight speed also increases, which makes dead-on impact tricky. With higher approach velocities, the force and acceleration required at impact to dissipate the momentum in a reasonable distance (i.e., the suspension travel) are also larger, which is why birds aerodynamically shed a good part of their speed before touchdown. That is what we are trying to reproduce with this platform. Even with a relatively heavy platform, we can shed a significant part of the airplane speed by using the pitch up maneuver and thrust to create a smooth landing with reasonable forces. 

I started this work at Stanford on a glider. I was able to demonstrate landing on a fairly light platform and takeoff on a different platform that was much heavier. It was extremely difficult and unreliable to do both landing and takeoff with the same platform. That is what Dino has achieved, and what we are describing in this paper. 

How reliable is the perching right now? What kinds of failure recovery techniques are you working on?

It is reliable in the lab. We performed more than 20 successive landings from different approach speeds. More is required, but after that we got bored! Through simulations, we designed the system to be robust to variations in numerous parameters. So far, we performed about a dozen landings outside on calm days. We want to keep working outside to push the limits of our system.  

We are thinking about various failure causes (unsuitable states during the approach, smooth surface for the microspines) and failure detection timing (before touchdown, at touchdown and after touchdown). In all cases, the takeoff strategy allows us to abort the maneuver at different stages, increase the thrust, and fly away from the wall to try again or find a different site.  

S-MAD

How would your perching approach change if you were to use a different kind of surface engagement hardware?

We like microspines because they are so simple and light. However, they have pretty strict force constraints that need to be respected for successful adhesion. That is why a suspension is required for semi-passive high speed landings. On smooth surfaces, directional dry-adhesives (e.g., gecko inspired) could be used. As they have similar force constraints, they could be use with few modifications. 

Cutkosky et al. developed many “opposed grippers” in the last few years based on microspines and dry-adhesives. Due to the gripping internal forces, these have a larger operating force space. They are not as sensitive to rebound and work well for perching, as they demonstrated on quadcopter. With this kind of mechanism, it would be even easier to land and remain on the surface. 

Other technologies do exists: magnetics, electroadhesion, etc. In all cases, our final approach toward the wall is now fairly smooth, controllable and at low speed. It shouldn’t be a problem to integrate most of these technologies.

Can you describe the thrust-assisted climbing process that you're working on? When would it be more advantageous to use this rather than taking off and perching again?

We are looking into that right now, both how to do it and when it makes sense to use various modes. In its most simple incarnation, thrust assisted climbing would consist of turning on the propeller, allowing the microspines to slide up while remaining into contact and turning the propeller off. This is enabled by the microspines anisotropic sliding behaviour: they slide in one direction and catch in the other. We could also think of flying up some distance away from the wall, or integrating actuated legs. 

Compared to climbing, flying up would allow the drone to move fast. Propellers can also be fairly efficient. However, trade studies to compare different locomotion modes are always tricky. You have to define your objectives: cost of transport, speed, agility, etc. You also have to consider numerous factors that are sometime hard to quantify: efficiency of gears, reuse of some components between flight and climbing, transition time, propeller size, operating away from the design point, battery size, etc. Pope et al. (2016) have done measurements and estimations on their SCAMP platform. Flying seems to be a more efficient way to climb up one meter, but they claim that motor/gearbox efficiency may be improved sufficiently to reverse that. Compared to SCAMP, our platform would spend significantly less time in transitions as the propeller is already pointing up.

What kinds of practical applications could a vehicle like this be used for?

This kind of capabilities enables small UAVs to perform extended mission, for days or weeks, where you land, rest/recharge, takeoff and repeat ad infinitum. This allows new types of missions. Ultimately, such platform could be used for long duration surveillance, energy harvesting, inspection of structures or reconfigurable sensor networks. 


Autonomous Thrust-Assisted Perching of a Fixed-Wing UAV on Vertical Surfaces, by Dino Mehanovic, John Bass, Thomas Courteau, David Rancourt, and Alexis Lussier Desbiens from the University of Sherbrooke in Canada, was presented at the 2017 Living Machines Conference at Stanford, where it won a Best Paper award.

[ Université de Sherbrooke ]

Lunatix

How Much Would You Pay to Drive a Jumping Robot on the Moon?

The moon isn't nearly as exciting as it used to be. Once we convinced ourselves that it was mostly just a big dead pile of rock (which didn't take long), interest and the funding that comes with it moved to Mars and beyond. The biggest thing that the moon has going for it is that it's relatively close to us: Spacecraft can get there in just a few days, and it takes only a couple of seconds for a signal to get there from here. 

The European Space Agency has been trying to encourage a hybrid approach to lunar usefulness, combining science with business (like mining and tourism) to help promote exploration in general. In partnership with the SpaceTech program at the Graz University of Technology in Austria, ESA is encouraging startups to develop ways of making money on the moon. One of the most recent ideas involves a bunch of little robots that gamers will be able to drive themselves.

Read More
Image: NVIDIA

Video Friday: Isaac Plays Dominoes, iCub Cleans Up an Octopus, and Weaponized Plastic Fighting

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here's what we have so far (send us your events!):

IEEE CASE 2017 – August 20-23, 2017 – Xi'an, China
IEEE ICARM 2017 – August 27-31, 2017 – Hefei, China
IEEE RO-MAN – August 28-31, 2017 – Lisbon, Portugal
CLAWAR 2017 – September 11-13, 2017 – Porto, Portugal
FSR 2017 – September 12-15, 2017 – Zurich, Switzerland
Singularities of Mechanisms and Robotic Manipulators – September 18-22, 2017 – Johannes Kepler University, Linz, Austria
ROSCon – September 21-22, 2017 – Vancouver, B.C., Canada
IEEE IROS – September 24-28, 2017 – Vancouver, B.C., Canada
RoboBusiness – September 27-28, 2017 – Santa Clara, Calif., USA
Drone World Expo – October 2-4, 2017 – San Jose, Calif., USA

Let us know if you have suggestions for next week, and enjoy today's videos.


Read More
AREE Venus rover

JPL's Design for a Clockwork Rover to Explore Venus

The longest amount of time that a spacecraft has survived on the surface of Venus is 127 minutes. On March 1, 1982, the USSR’s Venera 13 probe parachuted to a gentle landing and managed to keep operating for just over two hours by hiding all of its computers inside of a hermetically sealed titanium pressure vessel that was pre-cooled in orbit. The surface temperature on Venus averages 464 °C (867 °F), which is hotter than the surface of Mercury (the closest planet to the sun), and hot enough that conventional electronics simply will not work.

It’s not just the temperature that makes Venus a particularly nasty place for computers—the pressure at the surface is around 90 atmospheres, equivalent to the pressure 3,000 feet down in Earth’s ocean. And while you can be relieved that the sulfuric acid rain that you’ll find in Venus’ upper atmosphere doesn’t reach the surface, it’s also so dark down there (equivalent to a heavily overcast day here on Earth) that solar power is horrendously inefficient.

The stifling atmosphere that makes the surface of Venus so inhospitable also does a frustratingly good job of minimizing the amount that we can learn about the surface of the planet from orbit, which is why it would be really, really great to have a robot down there poking around for us. The majority of ideas for Venus surface exploration have essentially been the same sort of thing that the Soviets did with the Venera probes: Stuffing all the electronics inside of an insulated container hooked up to a stupendously powerful air conditioning system, probably driven by some alarmingly radioactive plutonium-powered Stirling engines. Developing such a system would likely cost billions in research and development alone.

A conventional approach to a Venus rover like this is difficult, expensive, and potentially dangerous, but a team of engineers at NASA’s Jet Propulsion Laboratory (JPL), in Pasadena, Calif., have come up with an innovative new idea for exploring the surface of Venus. If the problem is the electronics, why not just get rid of them, and build a mechanical rover instead?

With funding from the NASA Innovative Advanced Concepts (NIAC) program, the JPL team wants to see whether it might be possible to build a Venus exploration rover without conventional sensors, computers, or power systems. The Automaton Rover for Extreme Environments (AREE) would use clockwork gears and springs and other mechanisms to provide the majority of the rover’s functionality, including power generation, power storage, sensing, locomotion, and even communication: no electronics required. Bring on the heat.

Read More
This Osaka University three-legged robot is called Martian Petit

Martian-Inspired Tripod Walking Robot Generates Its Own Gaits

When Yoichi Masuda set out to design a new legged robot, he found inspiration in the Martian Tripods from the classic sci-fi novel “The War of the Worlds” by H.G. Wells. A three-legged configuration seems to offer some advantages when it comes to walking and balancing, and Masuda became curious about the absence of three-legged animals in nature. Are there evolutionary factors that explain why we haven’t seen any? And if three-legged creatures existed, could there be a universal principle of walking locomotion, common for bipeds, tripeds, and quadrupeds? To explore those questions, Masuda and his colleagues at Osaka University built a three-legged robot named Martian.

Read More
ANYmal quadruped robot from ANYbotics

Video Friday: More Boston Dynamics, Giant Fighting Robots, and ANYmal Quadruped

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here’s what we have so far (send us your events!):

IEEE CASE 2017 – August 20-23, 2017 – Xi’an, China
IEEE ICARM 2017 – August 27-31, 2017 – Hefei, China
IEEE RO-MAN – August 28-31, 2017 – Lisbon, Portugal
CLAWAR 2017 – September 11-13, 2017 – Porto, Portugal
FSR 2017 – September 12-15, 2017 – Zurich, Switzerland
Singularities of Mechanisms and Robotic Manipulators – September 18-22, 2017 – Johannes Kepler University, Linz, Austria
ROSCon – September 21-22, 2017 – Vancouver, B.C., Canada
IEEE IROS – September 24-28, 2017 – Vancouver, B.C., Canada
RoboBusiness – September 27-28, 2017 – Santa Clara, Calif., USA
Drone World Expo – October 2-4, 2017 – San Jose, Calif., USA

Let us know if you have suggestions for next week, and enjoy today’s videos.


Read More
Peter Corke, director of the Australian Centre for Robotic Vision at Queensland University of Technology, and other members of Team ACRV work on their robot, named Cartman, which won the 2017 Amazon Robotics Challenge in Japan.

Aussies Win Amazon Robotics Challenge

Amazon has a problem, and that problem is humans. Amazon needs humans, lots of them. But humans, as we all know, are the most unreasonable part of any business, constantly demanding things like lights and air. So Amazon has turned to robots (over 100,000 of them) for doing tasks like moving things around in a warehouse. But it’s proving to be much more difficult to get the robots to do some other tasks. One of the hardest is picking objects from shelves and bins.

To solve this problem, Amazon is making it someone else’s problem, by hosting a yearly robotics “picking” challenge. In the competition, teams have to develop robotics hardware and software that can recognize objects, grasp them, and move them from place to place. This is harder than it sounds, because we’re on year three and Amazon is still running this thing, but some clever Australians are making substantial progress.

Read More
Advertisement

Automaton

IEEE Spectrum’s award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, drones, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
New York City
Senior Writer
Evan Ackerman
Washington, D.C.
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Load More