The February 2023 issue of IEEE Spectrum is here!

Close bar

Your Unconscious Brain Can Do Math, Process Language

New experiments suggest sophisticated subliminal workings in the brain

2 min read
Your Unconscious Brain Can Do Math, Process Language
Wikimedia Commons

The unconscious brain may not be able to ace an SAT test, but new research suggests that it can handle more complex language processing and arithmetic tasks than anyone has previously believed. According to these findings, just published in the Proceedings of the National Academy of Sciences, we may be blithely unaware of all the hard work the unconscious brain is doing. 

In their experiments, researchers from Hebrew University in Israel used a cutting-edge "masking" technique to keep their test subjects from consciously perceiving certain stimuli. With this technique, known as continuous flash suppression, the researchers show a rapidly changing series of colorful patterns to just one of the subject's eyes. The bright patterns dominate the subject's awareness to such an extent that when researchers show less flashy material to the other eye (like words or equations), it takes several seconds before the brain consciously registers it. 

This masking technique is "a game changer in the study of the unconscious," the scientists write, "because unlike all previous methods, it gives unconscious processes ample time to engage with and operate on subliminal stimuli."

To study the unconscious brain's ability to process language, the researchers subliminally showed the subject short phrases that made variable amounts of sense: For example, subjects might see the phrase "I ironed coffee" or "I ironed clothes." The researchers gradually turned up the contrast between the phrase and its background, and measured how long it took for the phrase to "pop" into the subject's conscious awareness. As the nonsensical phrases popped sooner, the researchers hypothesize that the unconscious brain processed the sentence, found it surprising and odd, and quickly passed it along to the conscious brain for further examination.  

To determine the unconscious brain's mathematical abilities, the researchers presented a simple subtraction or addition equation (for example, "9 3 4 = ") to a subject, but took it away before it could pop into consciousness. Then they stopped the masking pattern and displayed a single number, asking the viewer to pronounce the number as soon as it registered. When the number was the answer to the subtraction equation (for example, "2"), the subject was quicker to pronounce it. The researchers argue that the viewer was "primed" to respond to that number because the unconscious brain had solved the equation. Oddly, they didn't find the same clear effect with easier addition equations. 

Why is IEEE Spectrum covering this? We could argue that until we understand the workings of consciousness in the human brain, we'll never be able to build an artificial intelligence that can be described as conscious and aware. Or we could admit that we just thought the study was nifty. 

Images: Wikimedia Commons; Ran Hassin et al. 

The Conversation (0)
Illustration showing an astronaut performing mechanical repairs to a satellite uses two extra mechanical arms that project from a backpack.

Extra limbs, controlled by wearable electrode patches that read and interpret neural signals from the user, could have innumerable uses, such as assisting on spacewalk missions to repair satellites.

Chris Philpot

What could you do with an extra limb? Consider a surgeon performing a delicate operation, one that needs her expertise and steady hands—all three of them. As her two biological hands manipulate surgical instruments, a third robotic limb that’s attached to her torso plays a supporting role. Or picture a construction worker who is thankful for his extra robotic hand as it braces the heavy beam he’s fastening into place with his other two hands. Imagine wearing an exoskeleton that would let you handle multiple objects simultaneously, like Spiderman’s Dr. Octopus. Or contemplate the out-there music a composer could write for a pianist who has 12 fingers to spread across the keyboard.

Such scenarios may seem like science fiction, but recent progress in robotics and neuroscience makes extra robotic limbs conceivable with today’s technology. Our research groups at Imperial College London and the University of Freiburg, in Germany, together with partners in the European project NIMA, are now working to figure out whether such augmentation can be realized in practice to extend human abilities. The main questions we’re tackling involve both neuroscience and neurotechnology: Is the human brain capable of controlling additional body parts as effectively as it controls biological parts? And if so, what neural signals can be used for this control?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}