Yarn-like Rechargeable Zinc Battery Could Power Smart Clothes and Wearables

The zinc yarn battery works when knotted, stretched, cut, and washed

2 min read
An image of a panda is used to illustrate how flexible, rechargeable yarn batteries can be connected in series to power electroluminescent panel displays.
Image: American Chemical Society

Researchers have shaped a rechargeable zinc-ion battery into an elastic yarn that churns out power when bent, stretched, washed with water, and even cut.

The zinc yarn battery could be woven into washable sensor-laden smart clothes and integrated into commercial textiles to power wearable displays, electronics, and medical implants.

The yarn joins a line-up of innovative flexible energy-generating and -storing devices that can be integrated into power fabrics. The list includes solar cell ribbons that can be woven into fabrics, knittable supercapacitors, and power-generating yarns that harvest mechanical energy or the triboelectric effect to generate power.

Some researchers have tried to make flexible versions of the workhorse zinc-manganese alkaline battery because of its proven high capacity, low cost, and safety. But these flexible versions have had low capacities. Plus these primary batteries can’t be recharged. But researchers have recently come up with high-performance rechargeable zinc-ion batteries.

 Schematic diagram of fabrication and encapsulation of the yarn ZIBSchematic diagram of fabrication and encapsulation of the yarn ZIBIllustration: American Chemical Society

Chunyi Zhi of the City University of Hong Kong and his colleagues made their thread-like rechargeable zinc battery by twisting carbon nanotube fibers into yarn. They coat one piece of yarn with zinc to make an anode and another with manganese dioxide to serve as a cathode. Then they wind the two yarn pieces on an elastic fiber, soak it with a commonly used water-absorbing gel, and encase the device in elastic silicone and a water repellant.

The yarn battery, detailed in ACS Nano, has a energy density of 53.8 milliwatt-hours per cubic centimeter, which is around three times as much as commercial thin-film lithium-ion batteries. It retains over 98 percent of its capacity after 500 recharging cycles.

“Compared with traditional lithium-ion batteries, which suffer from intrinsic safety and cost issues, this yarn battery can work well under various severe conditions,” Zhi says. It retains 95 percent of its original capacity when bent, knotted, twisted, and stretched up to three times its length. And it retained over 96 percent of its original capacity after being soaked in water for 12 hours.

As further proof of the yarn’s forte and coolness, the team made a 1-meter-long yarn, cut it into eight pieces, and showed that each piece could power a watch. Then they wove the pieces into a battery textile, which could power pulse monitors, a strip of 100 LEDs, and a 10 cm  x 10 cm flexible electroluminescent panel.

The researchers are now trying to integrate the yarn batteries with commercial fabrics and developing a large-scale manufacturing method for the batteries, Zhi says. “We also have a plan to develop other types of yarn batteries with more functions such as self-healing ability, or self-charge capability when combined with a solar cell component.”

The Conversation (0)

Deep Learning Could Bring the Concert Experience Home

The century-old quest for truly realistic sound production is finally paying off

12 min read
Image containing multiple aspects such as instruments and left and right open hands.
Stuart Bradford

Now that recorded sound has become ubiquitous, we hardly think about it. From our smartphones, smart speakers, TVs, radios, disc players, and car sound systems, it’s an enduring and enjoyable presence in our lives. In 2017, a survey by the polling firm Nielsen suggested that some 90 percent of the U.S. population listens to music regularly and that, on average, they do so 32 hours per week.

Behind this free-flowing pleasure are enormous industries applying technology to the long-standing goal of reproducing sound with the greatest possible realism. From Edison’s phonograph and the horn speakers of the 1880s, successive generations of engineers in pursuit of this ideal invented and exploited countless technologies: triode vacuum tubes, dynamic loudspeakers, magnetic phonograph cartridges, solid-state amplifier circuits in scores of different topologies, electrostatic speakers, optical discs, stereo, and surround sound. And over the past five decades, digital technologies, like audio compression and streaming, have transformed the music industry.

Keep Reading ↓Show less