The December 2022 issue of IEEE Spectrum is here!

Close bar

World's Most Powerful Magnet Under Construction

One hundred tesla without self-destructing

3 min read

Multiply the magnetic field strength of a refrigerator magnet by 2 million and you'll be in the ballpark of the strength of the magnet that researchers at the National High Magnetic Field Laboratory, based near Florida State University in Tallahassee, are trying to create. When completed later this year, the pulsed electromagnet, located at the lab's facility at the Los Alamos National Laboratory, in New Mexico, will reach 100 tesla, the holy grail of magnetic field strength. And in another first, if all goes according to plan it will reach that level--about 67 times as high as a typical MRI--without blowing itself to smithereens.

Why would anyone need a magnet that strong? Greg Boebinger, director of the Magnet Lab, says that this magnetic field strength is the only way to test the properties of newly discovered high-temperature superconductors like iron oxyarsenide, which may improve the performance of MRI machines and high-voltage power lines while lowering their cost. A 100â''T magnet would also let you conduct certain zero-gravity experiments without traveling into space and let you develop magnetic propulsion systems that could eventually replace those that burn rocket fuel.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less