The July 2022 issue of IEEE Spectrum is here!

Close bar

World-Record Data Transmission Speed Smashed

Japan sets new gold standard at 319 terabits/second—across more than 3000 km

3 min read
Equipment and wires. Japan's National Institute of Information and Communication's transmission equipment used in establishing a new world transmission speed record.

The optics and electronics used to establish a new data transmission speed record.


Researchers at Japan's National Institute of Information and Communications Technology (NICT) in Tokyo have almost doubled the previous long-haul data transmission speed record of 172 Tb/s established by NICT and others in April 2020. The researchers recently presented their results at the International Conference on Optical Fiber Communications.

In breaking the record, they used a variety of technologies and techniques still to become mainstream: special low-loss 4-core spatial division multiplexing (SDM) fiber employed in research projects, erbium and thulium doped-fiber amplifiers, distributed Raman amplification, and, in addition to utilizing the C-band and L-band transmission wavelengths, they used the S-band wavelength. Until now, S-band usage has been limited to lab tests conducted over just a few tens of kilometers in research projects. But perhaps of most significance is the claimed high transmission quality in the 4-core fiber that maintains the same outer diameter—0.125 mm—of glass cladding used in standard single-mode fiber.

"Because our SDM fiber has the same cladding as standard single-mode fibers, it can be compatible with the same cabling technology currently in use and makes early adoption more likely," says Ben Puttnam, a senior researcher at NICT and leader of the record-breaking project team.

There are other benefits, too, Puttnam notes. "Keeping the same diameter is also important because the mechanical properties and failure probabilities are well understood. Exactly how bending and twisting of larger fibers may affect their properties is not fully known." In the past, he says they have explored some research fibers with cladding diameters almost 3x larger and could achieve transmission rates of over 10 petabits a second. "But these fibers are hard to handle and sometimes snap like dry spaghetti." He adds that larger diameter fibers are also harder to make in long span lengths and the likelihood of splicing errors increase when fibers are joined together.

The experimental setup in the NICT lab comprises a recirculating transmission loop to achieve a distance of 3,001 km. Wavelength division multiplexing (WDM) of 552, 25-GHz spaced channels generated from a comb source and tunable lasers are used to carry the data. And to double the amount of information carried before launching a 120 nm signal into each of the four cores of the fiber, dual-polarization modulators were employed. At 69.8 km intervals along the fiber, loss is compensated for by two kinds of amplifiers—one doped with erbium, the other with thulium—to boost the signals in the C/L bands and in the S bands, respectively. In addition, Raman pump amplifiers provide gain along the transmission fiber, preventing the signal power from decaying excessively. This leads to less noise when the signal is amplified and improves overall performance.

Schematic diagram of NICT's transmission systemSchematic diagram of NICT's transmission system NICT

The decoded data rates across the S, C, and L bandwidths are: 102.5 Tb/s (S), 108.7 Tb/s (C) and 107.7 Tb/s (L).

"Now we are working to increase the transmission distance," says Puttnam. "We've already measured channels at a distance of 8,000 kilometers and want to push on to at least 10,000 kilometers by better optimizing the gain flattening." As for transmission rates, "Over short distant spans of 50 to 70 kilometers, I think we could eventually transmit over 1 petabit a second in this fiber."

And once the technology has been optimized, and provided SDM fiber is shown to be practically and economically manufacturable with the same cladding as standard single-mode fiber, what then? Puttnam sees one obvious user for the technology would be operators of trans-ocean submarine cables, where space is at a premium. Another likely customer would be large data centers, where high-density connectors can be crucial and new fibers are routinely added. The potential bandwidth of SDM fibers would also be attractive in terrestrial fiber networks, but the costly business of fiber deployment somewhat complicates the issue.

After deployment, Puttnam expects applications like high-resolution video streaming, online gaming and IoT communications to be some of the applications eating up the additional bandwidth, as will be the advent of 6G in a decade's time.

The Conversation (2)
Stanislav Starinski06 Aug, 2021

I'd been fascinated w/Japanese peoples, much of lifetime, perhaps dueto being a gen.X-er or whatever, here's just another news that maintains Japan as a wonder-country of TINY TINY few islands yet having disporportionally strong voice in technology/Engineering & somewhat less extreme in fundamental science Japan in the east, Germany in the west... it's easy to be influential when your landarea is enormous, like i was born in Russia which has 99% of Periodic Table chemical elements under its feet, not to mention oil, gas, forests, water, gold, precious gems, whatever yet it's disproportionally weak economically, & another thing is having pitifully small islands with nothing but seawater to tap into... and yet despie this Japan is a Technologically strong country, it's like British islands having enormous voice in Music & World's culture & language, despite small size.

1 Reply

The First Million-Transistor Chip: the Engineers’ Story

Intel’s i860 RISC chip was a graphics powerhouse

21 min read
Twenty people crowd into a cubicle, the man in the center seated holding a silicon wafer full of chips

Intel's million-transistor chip development team

In San Francisco on Feb. 27, 1989, Intel Corp., Santa Clara, Calif., startled the world of high technology by presenting the first ever 1-million-transistor microprocessor, which was also the company’s first such chip to use a reduced instruction set.

The number of transistors alone marks a huge leap upward: Intel’s previous microprocessor, the 80386, has only 275,000 of them. But this long-deferred move into the booming market in reduced-instruction-set computing (RISC) was more of a shock, in part because it broke with Intel’s tradition of compatibility with earlier processors—and not least because after three well-guarded years in development the chip came as a complete surprise. Now designated the i860, it entered development in 1986 about the same time as the 80486, the yet-to-be-introduced successor to Intel’s highly regarded 80286 and 80386. The two chips have about the same area and use the same 1-micrometer CMOS technology then under development at the company’s systems production and manufacturing plant in Hillsboro, Ore. But with the i860, then code-named the N10, the company planned a revolution.

Keep Reading ↓Show less