Winners, Losers, Holy Grails

The best and worst technology projects of the coming year

2 min read
Winners, Losers, Holy Grails

report logo

True technologists thrive on the chance to be in on the moment of creation, to make something elegant and enduring. Maybe once in their career, if they're really fortunate, they might even get a chance to help fundamentally change the way we work, commute, or play.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Women Behind ENIAC

A new book tells the story of how they broke a computer-science glass ceiling

6 min read
Two women programmers preparing a computer to be demonstrated.

Jean Jennings (left) and Frances Bilas, two of the ENIAC programmers, are preparing the computer for Demonstration Day in February 1946.

University Archives and Records Center/University of Pennsylvania

If you looked at the pictures of those working on the first programmable, general-purpose all-electronic computer, you would assume that J. Presper Eckert and John W. Mauchly were the only ones who had a hand in its development. Invented in 1945, the Electronic Numerical Integrator and Computer (ENIAC) was built to improve the accuracy of U.S. artillery during World War II. The two men and their team built the hardware. But hidden behind the scenes were six women—Jean Bartik, Kathleen Antonelli, Marlyn Meltzer, Betty Holberton, Frances Spence, and Ruth Teitelbaum—who programmed the computer to calculate artillery trajectories in seconds.

The U.S. Army recruited the women in 1942 to work as so-called human computersmathematicians who did calculations using a mechanical desktop calculator.

Keep Reading ↓Show less

The U.S.-China Chip Ban, Explained

The ban spotlights semiconductors for supercomputers; China hasn’t yet responded to restrictions

4 min read
computer chip with chinese flag
iStock

It has now been over a month since the U.S. Commerce Department issued new rules that clamped down on the export of certain advanced chips—which have military or AI applications—to Chinese customers.

China has yet to respond—but Beijing has multiple options in its arsenal. It’s unlikely, experts say, that the U.S. actions will be the last fighting word in an industry that is becoming more geopolitically sensitive by the day.

This is not the first time that the U.S. government has constrained the flow of chips to its perceived adversaries. Previously, the United States hasblocked chip sales to individual Chinese customers. In response to the Russian invasion of Ukraine earlier this year, the United States (along with several other countries, including South Korea and Taiwan) placed Russia under a chip embargo.

Keep Reading ↓Show less

Learn How Global Configuration Management and IBM CLM Work Together

In this presentation we will build the case for component-based requirements management

2 min read

This is a sponsored article brought to you by 321 Gang.

To fully support Requirements Management (RM) best practices, a tool needs to support traceability, versioning, reuse, and Product Line Engineering (PLE). This is especially true when designing large complex systems or systems that follow standards and regulations. Most modern requirement tools do a decent job of capturing requirements and related metadata. Some tools also support rudimentary mechanisms for baselining and traceability capabilities (“linking” requirements). The earlier versions of IBM DOORS Next supported a rich configurable traceability and even a rudimentary form of reuse. DOORS Next became a complete solution for managing requirements a few years ago when IBM invented and implemented Global Configuration Management (GCM) as part of its Engineering Lifecycle Management (ELM, formerly known as Collaborative Lifecycle Management or simply CLM) suite of integrated tools. On the surface, it seems that GCM just provides versioning capability, but it is so much more than that. GCM arms product/system development organizations with support for advanced requirement reuse, traceability that supports versioning, release management and variant management. It is also possible to manage collections of related Application Lifecycle Management (ALM) and Systems Engineering artifacts in a single configuration.

Keep Reading ↓Show less