The December 2022 issue of IEEE Spectrum is here!

Close bar

Winner: Nothing But Net

Britain switches its entire phone network to the Internet Protocol

9 min read
Winner: Nothing But Net
Matt Bross, CTO of BT Group
Illustration: Sean McCabe; Original Photo: Peter Searle

The United Kingdom is certainly an informative society. There are placards everywhere saying that pubs are fully licensed to sell ­spirits, that technicians at computer repair shops are certified, that London’s West End theaters are registered charities. A notice at a bus stop reads, ”We’re sorry that the timetable you require is not displayed here at the present time.” On the London Underground, I recently heard this frightening but helpful announcement over the public-address system: “Be advised you cannot transfer to the Northern Line at Bank station, because of a passenger caught underneath a train. You would be advised to transfer to the Northern line here.”

The UK is certainly also a leading member of the information society, but for some years it was a laggard in broadband. As late as 1999, all but 1 percent of the nation’s homes accessed the Internet at dial-up speeds. “We were in danger of becoming the big, fat, dumb, cheap pipe company,” says Matt Bross, chief technical officer of BT Group, in London, which was formerly the national carrier British Telecom and is still the overwhelmingly dominant provider of the “pipes” through which the country’s phone calls and data flow.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Paying Tribute to Computer Science Pioneer Frederick Brooks, Jr.

He helped develop the IBM System/360 and its operating system

3 min read
portrait of an elderly man in a a red tie and blazer with a bookcase in the background
University of North Carolina

Frederick P. Brooks Jr., a prolific computer scientist and longtime professor of computer science, died on 17 November at the age of 91.

While working as a project manager at IBM in the 1960s, the IEEE Life Fellow led the development of the System/360 computer family. It was the first vertically compatible family of mainframe computers. Brooks also developed IBM’s OS/360, the world’s largest software project at the time. He is credited with coining the term computer architecture, which is used to describe how hardware and software are organized to make up a computer system and the operations which guide its function. He wrote The Mythical Man-Month, a book of essays published in 1975 that detailed lessons he learned from challenges he faced while developing the OS/360.

Keep Reading ↓Show less

AI for Wireless

The key to overcoming complexity in modern wireless systems design

4 min read
Diagram showing machine learning workflows

This is a sponsored article brought to you by MathWorks.

The evolution of mobile wireless technology, from 3G/4G to 5G, and introduction of Industry 4.0, have resulted in the ever-increasing complexity of wireless systems design. Wireless networks have also become more difficult to manage due to requirements necessitating optimal sharing of valuable resources to expanding sets of users. These challenges force engineers to think beyond traditional rules-based approaches with many are turning to artificial intelligence (AI) as the go-to solution to face the challenges introduced by modern systems.

From managing communications between autonomous vehicles, to optimization of resource allocations in mobile calls, AI has brought the sophistication necessary for modern wireless applications. As the number and scope of devices connected to networks expands, so too will the role of AI in wireless. Engineers must be prepared to introduce it into increasingly complex systems. Knowing the benefits and current applications of AI in wireless systems, as well as the best practices necessary for optimal implementation, will be key for the future success of the technology.

Keep Reading ↓Show less