Will Humans Start Colonizing Mars in Ten Years?

MIT team's critique of a nonprofit's Mars colonization effort has kicked off fierce online debate

3 min read
Will Humans Start Colonizing Mars in Ten Years?
Bryan Versteeg/Mars One

Colonizing Mars has long represented one of the more ambitious dreams for space travel proponents ranging from NASA scientists to Silicon Valley entrepreneur and SpaceX founder Elon Musk. The latter also envisions sending humans to Mars sometimes in the next several decades, and has mused about how to build a Mars colony population of 1 million people in an Aeon interview.

Mars One — a nonprofit organization based in the Netherlands — shares some of the Musk’s goals and indeed, the Mars One vision relies on Musk’s SpaceX’s Falcon Heavy rocket. But Mars One’s concept of seeding Mars with human colonies by launching one-way missions recently received some close scrutiny from a team of MIT researchers.

The MIT team’s critique identified potential challenges and estimated that settling the first batch of Mars colonists would require about 15 launches of the Falcon Heavy rocket being developed by Musk’s firm SpaceX at a cost of $4.5 billion. MIT also suggested that Mars One may want to dial back its aggressive schedule of sending four-person crews every 26 months starting in 2024.

The MIT paper took a particularly close look at the Mars One idea that it could establish a sustainable colony on Mars using existing technology starting in the 2020s, according to Space Policy Online. MIT’s researchers concluded that Mars One was overreaching with its statement that “no new major developments or inventions are needed” to make such an effort possible. In a Reddit AMA, they also urged Mars One to take a slower-paced approach that field-tested all the necessary habitat equipment on the red planet before sending humans.

“We believe this is a time for boldness in space exploration, but there is also a necessary amount of caution,” said MIT’s team, a group overseen by Olivier de Weck, an aeronautics and astronautics engineer at MIT. “A catastrophe in the early days of Martian colonization may cripple the endeavor in today’s risk-averse society.”

In 2012, Mars One first proposed sending Mars settlers on a one-way trip to the red planet starting in 2024 — a project based on the idea of making such a Mars endeavor into a multimedia reality show. Mars One also envisions first sending robotic missions to set up the crew habitat between 2018 and 2023, before the first humans ever set foot on the red planet.

MIT’s simulation of the Mars One mission plan highlighted a few areas in particular.

First, the study found that the cost of the permanent colony would grow steadily over time because of the increasing requirement for spare partsspares would account for an estimated 62 percent of mass transported to Mars after almost 11 years of settlement.

Second, the study identified a potential problem of managing excessive oxygen levels if the Mars One effort grew all its food as crops on the red planet.

Third, it pointed out that carrying all food from Earth could be more efficient than growing Mars crops because of Martian agriculture’s equipment requirement.

The MIT paper presented at the International Astronautical Congress (IAC2014) in Toronto has sparked a firestorm of online debate between supports of the Mars One vision and the more skeptical side of the space enthusiast community. But the MIT team clarified during the Reddit AMA that it did not set out to “discredit” Mars One and simply wanted to clarify the technology road map required for such an effort. (MIT team leader Olivier de Weck talked Mars mission logistics in IEEE Spectrum’s 2009 special report on going to Mars.)

Suggestions from the MIT team during the Reddit AMA session included testing all life support and in situ resource utilization (ISRU) technologies on Mars for at least 26 months before sending humans. The researchers also pointed out that slowing down the rate of sending settlers could reduce the impact of the increasing spares requirement on mission mass. They also raised the future possibility of 3-D printing and other ISRU technologies reducing the need for spares.

The Conversation (0)

​​Why the World’s Militaries Are Embracing 5G

To fight on tomorrow's more complicated battlefields, militaries must adapt commercial technologies

15 min read
4 large military vehicles on a dirt road. The third carries a red container box. Hovering above them in a blue sky is a large drone.

In August 2021, engineers from Lockheed and the U.S. Army demonstrated a flying 5G network, with base stations installed on multicopters, at the U.S. Army's Ground Vehicle Systems Center, in Michigan. Driverless military vehicles followed a human-driven truck at up to 50 kilometers per hour. Powerful processors on the multicopters shared the processing and communications chores needed to keep the vehicles in line.

Lockheed Martin

It's 2035, and the sun beats down on a vast desert coastline. A fighter jet takes off accompanied by four unpiloted aerial vehicles (UAVs) on a mission of reconnaissance and air support. A dozen special forces soldiers have moved into a town in hostile territory, to identify targets for an air strike on a weapons cache. Commanders need live visual evidence to correctly identify the targets for the strike and to minimize damage to surrounding buildings. The problem is that enemy jamming has blacked out the team's typical radio-frequency bands around the cache. Conventional, civilian bands are a no-go because they'd give away the team's position.

As the fighter jet and its automated wingmen cross into hostile territory, they are already sweeping the ground below with radio-frequency, infrared, and optical sensors to identify potential threats. On a helmet-mounted visor display, the pilot views icons on a map showing the movements of antiaircraft batteries and RF jammers, as well as the special forces and the locations of allied and enemy troops.

Keep Reading ↓ Show less