The July 2022 issue of IEEE Spectrum is here!

Close bar

Why We Must Fight for the Right to Repair Our Electronics

Pending U.S. legislation could force manufacturers to make repair parts and information available at fair prices

9 min read
Photo of a smart phone surrounded by tools
Photo: The Voorhes

The Consumer Technology Association estimated that residents of the United States bought 183 million smartphones in 2016. There are already as many TVs in this country as there are people. That’s a lot of electronics, and these numbers are just going up.

On balance, all this technology is probably making our lives better. But there’s a downside, too: The stuff often malfunctions. Unlike the 30-year-old mixer on your kitchen counter that refuses to die, new technology—especially the smart devices with fancy, embedded electronics—breaks more quickly. That trend, confirmed by a recent study by the German government, applies not just to delicate products like smartphones and tablets but also to equipment we would expect to last for a long time—like televisions, washing machines, and even tractors.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

When Gamers Get Nasty

Researchers grapple with subjectivity as they develop aIgorithms to detect toxicity in online gaming

2 min read
A man wearing a headset is seen in a dark room playing video games
Getty Images

Online gaming is a chance for players to come together, socialize and enjoy some friendly competition. Unfortunately, this enjoyable activity can be hindered by abusive language and toxicity, negatively impacting the gaming experience and causing psychological harm. Gendered and racial toxicity, in particular, are all too common in online gaming.

To combat this issue, various groups of researchers have been developing AI models that can detect toxic behavior in real-time as people play. One group recently developed a new model, which is described in a study published May 23 in IEEE Transactions on Games. While the model can detect toxicity with a fair amount of accuracy, its development demonstrates just how challenging it can be to determine what is considered toxic—a subjective matter.

Keep Reading ↓Show less

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM's quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.
IBM

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner's guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM's publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or "qubits," which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

A Multiphysics Approach to Designing Fuel Cells for Electric Vehicles

White paper on fuel cell modeling and simulation

1 min read
Comsol Logo
Comsol

Fuel cell electric vehicles (FCEVs) often reach higher energy density and exhibit greater efficiency than battery EVs; however, they also have high manufacturing costs, limited service life, and relatively low power density.

Modeling and simulation can improve fuel cell design and optimize EV performance. Learn more in this white paper.