Why Rat-Brained Robots Are So Good at Navigating Unfamiliar Terrain

Running algorithms that mimic a rat’s navigation neurons, heavy machines will soon plumb Australia’s underground mines

11 min read
Vertical
Opening photo for this feature article.
Photo: Dan Saelinger
Red

If you take a common brown rat and drop it into a lab maze or a subway tunnel, it will immediately begin to explore its surroundings, sniffing around the edges, brushing its whiskers against surfaces, peering around corners and obstacles. After a while, it will return to where it started, and from then on, it will treat the explored terrain as familiar.

Roboticists have long dreamed of giving their creations similar navigation skills. To be useful in our environments, robots must be able to find their way around on their own. Some are already learning to do that in homes,offices, warehouses, hospitals, hotels, and, in the case of self-driving cars, entire cities. Despite the progress, though, these robotic platforms still struggle to operate reliably under even mildly challenging conditions. Self-driving vehicles, for example, may come equipped with sophisticated sensors and detailed maps of the road ahead, and yet human drivers still have to take control in heavy rain or snow, or at night.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Boston Dynamics AI Institute Targets Basic Research

Hyundai’s new robotics venture recalls Bell Labs’ and Xerox PARC’s glory days

4 min read
A collage of a headshot of Marc Raibert who is an older man with a beard and glasses in a flower print shirt, and an large black and white Atlas humanoid robot
Photo-illustration: IEEE Spectrum; Photos: Boston Dynamics

This morning, Hyundai Motor Group and Boston Dynamics announced the launch of the Boston Dynamics AI Institute, to “spearhead advancements in artificial intelligence and robotics.” BDAII (I guess we’ll have to get used to that acronym!) will be located in Cambridge, Mass., with more than US $400 million of initial investment from Hyundai (Boston Dynamics’ parent company) and BD itself to get things started. Heading up the whole thing will be Boston Dynamics founder Marc Raibert himself, with Al Rizzi (Boston Dynamics’ chief scientist) as chief technology officer.

This new venture looks promising.

Keep Reading ↓Show less

Where the President-Elect Candidates Stand on Key Issues

The four weigh in on climate change, education programs, and diversity

6 min read
A photo of four people standing next to each other.

Life Fellow Thomas Coughlin, Senior Members Kathleen Kramer and Maike Luiken, and Life Fellow Kazuhiro Kosuge are running for 2023 President-Elect.

Steve Schneider

Two virtual events were held in June and July for members to get to know the four candidates running for 2023 IEEE president-elect. President Ray Liu asked Thomas M. Coughlin, Kazuhiro Kosuge, Kathleen A. Kramer, and Maike Luiken questions submitted by members on issues important to them.

The candidates were asked about their plans for increasing diversity, equity, and inclusion at IEEE; expanding science, technology, engineering, and math education programs; and ways to attract and retain members. They also spoke about IEEE’s role in addressing the global climate crisis.

Keep Reading ↓Show less

Automating Road Maintenance With LiDAR Technology

Team from SICK’s TiM$10K Challenge creates system to automate road maintenance

4 min read

Developed by a team of students at Worcester Polytechnic Institute as part of SICK's TiM$10K Challenge, their ROADGNAR system uses LiDAR to collect detailed data on the surface of a roadway.

SICK

This is a sponsored article brought to you by SICK Inc.

From advanced manufacturing to automated vehicles, engineers are using LiDAR to change the world as we know it. For the second year, students from across the country submitted projects to SICK's annual TiM$10K Challenge.

Keep Reading ↓Show less