Why People Demanded Privacy to Confide in the World’s First Chatbot

In 1966, the Eliza program couldn’t say much—but it was enough

4 min read
Computer scientist Joseph Weizenbaum with his chatbot Eliza, running on an IBM 36-bit IBM 7094 mainframe computer.
Computer scientist Joseph Weizenbaum with his chatbot Eliza, running on a 36-bit IBM 7094 mainframe computer.
Photo-illustration: Gluekit

This is part four of a six-part series on the history of natural language processing.

Between 1964 and 1966, Joseph Weizenbaum, a German American computer scientist at MIT’s artificial intelligence lab, developed the first-ever chatbot [PDF].

While there were already some rudimentary digital language generators in existence—programs that could spit out somewhat coherent lines of text—Weizenbaum’s program was the first designed explicitly for interactions with humans. The user could type in some statement or set of statements in their normal language, press enter, and receive a response from the machine. As Weizenbaum explained, his program made “certain kinds of natural-language conversation between man and computer possible.”

He named the program Eliza after Eliza Doolittle, the working-class hero of George Bernard Shaw’s Pygmalion who learns how to talk with an upper-class accent. The new Eliza was written for the 36-bit IBM 7094, an early transistorized mainframe computer, in a programming language that Weizenbaum developed called MAD-SLIP.

Because computer time was a valuable resource, Eliza could only be run via a time-sharing system; the user interacted with the program remotely via an electric typewriter and printer. When the user typed in a sentence and pressed enter, a message was sent to the mainframe computer. Eliza scanned the message for the presence of a keyword and used it in a new sentence to form a response that was sent back, printed out, and read by the user.

To encourage ongoing dialogue, Weizenbaum designed Eliza to simulate the type of conversational style used by a Rogerian psychoanalyst. The program would take something the user said and reflect it back with a question, as can be seen in the example below. (Notice how the program takes keywords like “boyfriend” and “depressed” and re-uses them.)

Human: Men are all alike.

Computer: IN WHAT WAY?

Human: They’re always bugging us about something or other.

Computer: CAN YOU THINK OF A SPECIFIC EXAMPLE?

Human: Well, my boyfriend made me come here.

Computer: YOUR BOYFRIEND MADE YOU COME HERE

Human: He says I’m depressed much of the time.

Computer: I AM SORRY TO HEAR YOU ARE DEPRESSED

Human: It’s true. I am unhappy.

Weizenbaum chose this mode of dialogue for Eliza because it gave the impression that the computer understood what was being said without having to offer anything new to the conversation. It created the illusion of comprehension and engagement in a mere 200 lines of code.

To test Eliza’s capacity to engage an interlocutor, Weizenbaum invited students and colleagues into his office and let them chat with the machine while he looked on. He noticed, with some concern, that during their brief interactions with Eliza, many users began forming emotional attachments to the algorithm. They would open up to the machine and confess problems they were facing in their lives and relationships.

During their brief interactions with Eliza, many users began forming emotional attachments to the algorithm.

Even more surprising was that this sense of intimacy persisted even after Weizenbaum described how the machine worked and explained that it didn’t really understand anything that was being said. Weizenbaum was most troubled when his secretary, who had watched him build the program from scratch over many months, insisted that he leave the room so she could talk to Eliza in private.

For Weizenbaum, this experiment with Eliza made him question an idea that Alan Turing had proposed in 1950 about machine intelligence. In his paper, entitled “Computing Machinery and Intelligence,” Turing suggested that if a computer could conduct a convincingly human conversation in text, one could assume it was intelligent—an idea that became the basis of the famous Turing Test.

But Eliza demonstrated that convincing communication between a human and a machine could take place even if comprehension only flowed from one side: The simulation of intelligence, rather than intelligence itself, was enough to fool people. Weizenbaum called this the Eliza effect, and believed it was a type of “delusional thinking” that humanity would collectively suffer from in the digital age. This insight was a profound shock for Weizenbaum, and one that came to define his intellectual trajectory over the next decade.

The simulation of intelligence, rather than intelligence itself, was enough to fool people.

In 1976, he published Computing Power and Human Reason: From Judgment to Calculation [PDF], which offered a long meditation on why people are willing to believe that a simple machine might be able to understand their complex human emotions.

In this book, he argues that the Eliza effect signifies a broader pathology afflicting “modern man.” In a world conquered by science, technology, and capitalism, people had grown accustomed to viewing themselves as isolated cogs in a large and uncaring machine. In such a diminished social world, Weizenbaum reasoned, people had grown so desperate for connection that they put aside their reason and judgment in order to believe that a program could care about their problems.

Weizenbaum spent the rest of his life developing this humanistic critique of artificial intelligence and digital technology. His mission was to remind people that their machines were not as smart as they were often said to be. And that even though it sometimes appeared as though they could talk, they were never really listening.

This is the fourth installment of a six-part series on the history of natural language processing. Last week’s post described Andrey Markov and Claude Shannon’s painstaking efforts to create statistical models of language for text generation. Come back next Monday for part five, which describes the Microsoft’s disastrous 2016 experiment with a chatbot that learned the subtleties of language from Twitter. 

You can also check out our prior series on the untold history of AI.

The Conversation (0)

Andrew Ng: Unbiggen AI

The AI pioneer says it’s time for smart-sized, “data-centric” solutions to big issues

10 min read
​Andrew Ng listens during the Power of Data: Sooner Than You Think global technology conference in Brooklyn, New York, on Wednesday, October 30, 2019.

Andrew Ng was involved in the rise of massive deep learning models trained on vast amounts of data, but now he’s preaching small-data solutions.

Cate Dingley/Bloomberg/Getty Images

Andrew Ng has serious street cred in artificial intelligence. He pioneered the use of graphics processing units (GPUs) to train deep learning models in the late 2000s with his students at Stanford University, cofounded Google Brain in 2011, and then served for three years as chief scientist for Baidu, where he helped build the Chinese tech giant’s AI group. So when he says he has identified the next big shift in artificial intelligence, people listen. And that’s what he told IEEE Spectrum in an exclusive Q&A.

Keep Reading ↓ Show less