The December 2022 issue of IEEE Spectrum is here!

Close bar

Whatever Happened to the Molecular Computer?

Why the tantalizing promise of replacing silicon with molecular components has yet to be fulfilled

12 min read
Illustration: Dan Page
Illustration: Dan Page

Forty years ago, a New York University graduate student named Arieh Aviram opened his Ph.D. dissertation with a bold suggestion: “Taking a clue from nature, [which] utilizes molecules for the carrying out of many physical phenomena, it may be possible to miniaturize electronic components down to molecular size.” What Aviram was proposing was revolutionary: leapfrogging the ongoing miniaturization trend of Moore’s Law by substituting single organic molecules for silicon transistors and diodes.

In a paper written with his thesis advisor, Mark Ratner, Aviram even described a theoretical starting point for such a revolution—a “molecular rectifier” [subscription required], for converting alternating current to direct current.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

IEEE President’s Note: Looking to 2050 and Beyond

The importance of future-proofing IEEE

4 min read
Photo of K. J. Ray Liu
IEEE

What will the future of the world look like? Everything in the world evolves. Therefore, IEEE also must evolve, not only to survive but to thrive.

How will people build communities and engage with one another and with IEEE in the future? How will knowledge be acquired? How will content be curated, shared, and accessed? What issues will influence the development of technical standards? How should IEEE be organized to be most impactful?

Keep Reading ↓Show less

The Device That Changed Everything

Transistors are civilization’s invisible infrastructure

2 min read
A triangle of material suspended above a base

This replica of the original point-contact transistor is on display outside IEEE Spectrum’s conference rooms.

Randi Klett

I was roaming around the IEEE Spectrum office a couple of months ago, looking at the display cases the IEEE History Center has installed in the corridor that runs along the conference rooms at 3 Park. They feature photos of illustrious engineers, plaques for IEEE milestones, and a handful of vintage electronics and memorabilia including an original Sony Walkman, an Edison Mazda lightbulb, and an RCA Radiotron vacuum tube. And, to my utter surprise and delight, a replica of the first point-contact transistor invented by John Bardeen, Walter Brittain, and William Shockley 75 years ago this month.

I dashed over to our photography director, Randi Klett, and startled her with my excitement, which, when she saw my discovery, she understood: We needed a picture of that replica, which she expertly shot and now accompanies this column.

Keep Reading ↓Show less