What Will Electronics Be Made Of? Silk and Snails and the Eggs of Quails

Materials scientists are coming up with ways to make circuits from biological materials

3 min read
A computer keyboard laying in the grass.
Photo: Konstantin Inozemtsev/Getty Images

The United Nations estimates that people throw away about 50 million metric tons of electronics every year. One way to lessen the problem, some scientists say, may be to use biological materials—including plant dyes and DNA—to build devices that are biodegradable and biocompatible.

“We have to be ashamed” of the amount of e-waste humanity produces, Mihai Irimia-Vladu told a symposium on organic bioelectronics at the December meeting of the Materials Research Society, in Boston. Irimia-Vladu, a materials scientist at Joanneum Research in Weiz, Austria, has used cellulose as a dielectric layer in an inverter circuit and shellac as a dielectric in organic field-effect transistors. Many other biological materials could be transformed into suitable dielectrics, he says, including aloe, silk, and egg whites. Beeswax and carnauba wax—derived from a species of palm tree—could make dielectrics that are also hydrophobic, which might be useful in some applications, Irimia-Vladu says.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less