What to Wear on Mars

Those bulky Apollo-era space suits are so yesterday

3 min read
What to Wear on Mars

photo of woman in space suit Photo: Joshua Dalsimer

This is part of IEEE Spectrum’s Special Report: Why Mars? Why Now?

There are lots of unanswered questions about the best way to get people to Mars. What engines should power their ship? How will the crew prevent bone and muscle loss in the weightless void? How can they land safely on the planet’s surface?

And then there’s this: what to wear on Mars? The lucky few who get to take those momentous first steps in the red dirt could very well be wearing something like Dava Newman’s BioSuit.

Tightly tailored to the astronaut’s body, the BioSuit looks like something out of a ’60s Italian sci-fi flick. It’s a far cry from today’s bulky space apparel, because the BioSuit works on a totally different principle.

Mars has an atmospheric pressure of 0.6 kilopascals, not quite 1 percent of Earth’s. If you were to venture out unprotected, many things would conspire to ruin your day. In particular, your tissues would expand, and your blood cells would come out of solution and congeal. That would kill you within minutes. So, as on the moon or in space, humans need some way to apply pressure to the body and keep those blood cells where they belong.

Current space suits rely on a mixture of pressurized gases, which fill them as if they were balloons. That also makes the suits bulky, notes Newman [above], a professor of aeronautics and astronautics at MIT. One reason that Apollo astronauts adopted a two-footed kangaroo hop on the moon, she says, was that their puffy suits severely encumbered them.

The BioSuit’s tight, stretchy material applies pressure to the skin mechanically rather than barometrically, without gas and with much less restriction of movement. It’s made of a mix of polymers, including nylon and spandex, so it would probably be cheap to manufacture—maybe a tenth of the US $20 million price tag of one of today’s suits, Newman estimates. Her partners on the project are the industrial design firms Trotti & Associates, of Cambridge, Mass., and Dainese, based in Molvena, Italy, which specializes in gear for motorcyclists.

The suit maintains a constant 30 kPa, or about 30 percent of Earth’s pressure. The wearer could stroll around on Mars for up to 8 hours without suffering any ill effects. Before stepping out, though, you might need to undergo decompression—known as a prebreathe protocol—if the pressure difference between the spacecraft and the space suit was greater than about 40 kPa. On the International Space Station, which is kept at 101 kPa, the prebreathe protocol takes 4 hours.

The BioSuit is basically a fail-safe design: If you tear its fabric, you lose pressure only around the tear. You could fix it temporarily by wrapping it up tightly like an Ace bandage. A rip in a gas-pressurized suit, by contrast, triggers an increase in gas flow to give the wearer time to retreat to a vehicle or habitat. But if no shelter is available or the leak isn’t fixed quickly, even a tiny tear could become a major emergency.

Newman says she’s still got a lot of work to do. “We’ve tested people for several hours in a vacuum chamber. But we need a suit that you’re going to be able to wear for a full day’s work.”

She has no doubt that someday we’ll see people bounding rather than hopping on the Red Planet. “The best movement on Mars is loping,” she says, noting that Mars’s gravity is 38 percent that of Earth’s. “Long steps with lots of aerial” will let astronauts cover more ground with less effort.

“On Mars, we’re all extreme athletes,” she adds.

For more articles, go to Special Report: Why Mars? Why Now?

About the Author

Monica Heger, a science writer in New York City, came of age in a post-Apollo world and never thought much about space exploration. So she was surprised to learn of all the ongoing research on manned spaceflight, including the advanced space suit she writes about in “What to Wear on Mars.”

To Probe Further

For more on Spacesuits, see “The Evolution of the Space Suit

The Conversation (0)

Q&A With Co-Creator of the 6502 Processor

Bill Mensch on the microprocessor that powered the Atari 2600 and Commodore 64

5 min read
Bill Mensch

Few people have seen their handiwork influence the world more than Bill Mensch. He helped create the legendary 8-bit 6502 microprocessor, launched in 1975, which was the heart of groundbreaking systems including the Atari 2600, Apple II, and Commodore 64. Mensch also created the VIA 65C22 input/output chip—noted for its rich features and which was crucial to the 6502's overall popularity—and the second-generation 65C816, a 16-bit processor that powered machines such as the Apple IIGS, and the Super Nintendo console.

Many of the 65x series of chips are still in production. The processors and their variants are used as microcontrollers in commercial products, and they remain popular among hobbyists who build home-brewed computers. The surge of interest in retrocomputing has led to folks once again swapping tips on how to write polished games using the 6502 assembly code, with new titles being released for the Atari, BBC Micro, and other machines.

Keep Reading ↓ Show less

Spot’s 3.0 Update Adds Increased Autonomy, New Door Tricks

Boston Dynamics' Spot can now handle push-bar doors and dynamically replan in complex environments

5 min read
Boston Dynamics

While Boston Dynamics' Atlas humanoid spends its time learning how to dance and do parkour, the company's Spot quadruped is quietly getting much better at doing useful, valuable tasks in commercial environments. Solving tasks like dynamic path planning and door manipulation in a way that's robust enough that someone can buy your robot and not regret it is, I would argue, just as difficult (if not more difficult) as getting a robot to do a backflip.

With a short blog post today, Boston Dynamics is announcing Spot Release 3.0, representing more than a year of software improvements over Release 2.0 that we covered back in May of 2020. The highlights of Release 3.0 include autonomous dynamic replanning, cloud integration, some clever camera tricks, and a new ability to handle push-bar doors, and earlier today, we spoke with Spot Chief Engineer at Boston Dynamics Zachary Jackowski to learn more about what Spot's been up to.

Keep Reading ↓ Show less

High Temperature Resistant Adhesives Beat the Heat

Because suppliers test adhesives so differently, temperature resistance values on data sheets are notoriously inconsistent–Master Bond's latest white paper takes a closer look at some of these crucial issues

1 min read

Selecting the right adhesive product for extreme temperature applications may seem as straightforward as reading temperature resistance values on data sheets. Some engineers will sometimes address temperature issues by simply selecting an adhesive rated for temperatures beyond their application's expected operating temperature.

However, because suppliers test adhesives so differently, temperature resistance values on data sheets are notoriously inconsistent. Master Bond's latest white paper takes a closer look at some of these crucial issues and the key factors to consider when your adhesive application has to beat the heat or cope with the cold.

Keep Reading ↓ Show less

Trending Stories

The most-read stories on IEEE Spectrum right now