What To Pack For Mars

A successful mission requires a well-planned supply strategy

2 min read
Sketch of Olivier de Weck
Illustration: Jacob Thomas

This is part of IEEE Spectrum’s Special Report: Why Mars? Why Now?

Sketch of Olivier de Weck Illustration: Jacob Thomas

You can’t take much into space. When a rocket is on the launchpad, 99.9 percent of the mass is the fuel and the vehicle itself. That leaves 0.1 percent for everything else—the crew and all their supplies. When considering what to bring, how do we trade off between consumables (needed for survival), spare parts (for safety), and research equipment (which gives the mission value)?

Starting in 2005, NASA asked my group at MIT to develop SpaceNet, software that helps mission planners evaluate these trade-offs. The program manages and models the complex supply chain of vehicles and supplies along with the processes and orbital dynamics required for manned missions, whether they’re to Mars, the International Space Station (ISS), or a lunar outpost. We designed our software to model each step in a mission as well as a whole campaign of missions. SpaceNet allows planners to quantitatively compare different mission architectures to optimize the exploration capability and launch mass. We also want to make supply chains robust so that one failed or delayed mission doesn’t ruin the whole plan.

In 2005, we tested our computer models by participating in the Haughton-Mars Project, in which a small group of researchers live in an Arctic base as if they were on Mars. The experience was enlightening. We found that of the operational inventory (that 0.1 percent of launch mass), two-thirds went to ground vehicles and fuel for powering the base. From this experience, we’ve calculated that each crew member added to a 600-day Mars mission would require sending 13 metric tons more cargo to the Martian surface.

But even if you deliver the right amount of supplies, it matters how they are organized. For example, there are between 15 000 and 20 000 objects on the ISS. If you take the total number of useful crew hours in a year and divide by the total operating budget, you find that the value of 1 hour of an astronaut’s time on the ISS is US $186 000. So 5 minutes spent looking for one hard-to-find item wastes $15 000.

On a Mars mission, time will be even more valuable. Storage should be reconfigurable so that the most needed items are always accessible and everything else is out of the way. We’re now working on an RFID system that tracks the location of each piece of inventory at all times. The ultimate goal is to create smart, self-aware environments that are both safe and effective for exploration far from Earth. We hope that better space logistics will give future astronauts more time to do valuable work.

—As told to Joshua J. Romero

For more articles, go to Special Report: Why Mars? Why Now?

About the Author

Olivier L. de Weck is the leader of the MIT Strategic Engineering Research Group.

The Conversation (0)

SambaNova CEO: “We’re Built for Large”

Rodrigo Liang explains the $5-billion AI startup’s philosophy and future

8 min read
SambaNova CEO, Rodrigo Liang

SambaNova CEO, Rodrigo Liang


AI, particularly the huge neural networks that meant to understand and interact with us humans, is not a natural fit for computer architectures that have dominated for decades. A host of startups recognized this in time to develop chips and sometimes the computers they'd power. Among them, Palo Alto-based SambaNova Systems is a standout. This summer the startup passed US $1 billion in venture funding to value the company at $5 billion. It aims to tackle the largest neural networks that require the most data using a custom-built stack of technology that includes the software, computer system, and processor, selling its use as a service instead of a package. IEEE Spectrum spoke to SambaNova CEO Rodrigo Liang in October 2021.

Rodrigo Liang on…

Keep Reading ↓ Show less

The World’s Most Popular EVs Aren’t Cars, Trucks, or Motorcycles

The pandemic has helped transform the e-bike into a juggernaut

6 min read
man riding electric bike in city
Westend61/Getty Images

When the U.S. House of Representatives passed the Build Back Better Act last week, a lesser-recognized provision earmarked some $4.1 billion in tax credits to further stimulate an already booming EV market that Elon Musk hasn't even dabbled in.

Electric bicycles, better known as e-bikes, have moved from novelty to mainstream with breathtaking speed. They've been a boon to hard-working delivery persons during the pandemic (and their impatient customers), and commuters who don't care to be a sweaty mess when they arrive. And while the scoffing tends to center around the "purity" of cycling—the idea that e-bike riders are somehow lazy cheaters—that electric assist is actually luring people off the couch for healthy exercise. That's especially welcome for older or out-of-practice riders (which describes a whole lot of folks) who might otherwise avoid cycling entirely, put off by daunting hills or longer distances.

Keep Reading ↓ Show less

Fundamentals of radome and bumper measurements using the R&S QAR

This whitepaper examines how the R&S QAR quality automotive radome tester can help

1 min read

Due to design challenges, radar sensors are usually hidden behind bumpers or emblems, which can influence how well the radar sensor can interpret the outgoing and incoming data. To test radome and bumper influence on radar sensors, this whitepaper examines how the R&S®QAR quality automotive radome tester can help. Register now and download our free whitepaper.