Close

WebAssembly Will Finally Let You Run High-Performance Applications in Your Browser

Online applications could work as smoothly as the programs you install on your machine

10 min read
Luke Wagner [right] and his Mozilla colleague Alon Zakai.
The author, Luke Wagner (right), and his Mozilla colleague Alon Zakai strive to make browsers run programs faster and better.
Photo: Gabriela Hasbun

What if you could share a computer-aided design (CAD) model and even allow a colleague to manipulate it from afar? “Click on this link, check out my design, and feel free to add more holes or fill some in,” you might say. You wouldn’t have to instruct your distant coworker to install special software or worry about whether her operating system could run it. Imagine that all your programs and data were stored in the cloud and that even computationally intensive applications like multimedia editing ran just as well in your browser as they would if they had been installed locally.

Since the early days of the World Wide Web, a lot of smart, passionate people have wanted to make it into a vehicle for running almost any kind of program. What makes that dream so tantalizing is that the Web is different from other software platforms. It’s defined by open standards, so anyone can build on it. It’s not owned by any company, so developers are beholden only to their users. And it’s constructed largely around open-source technologies, so it has the potential to be very democratic.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Transistor for Sound Points Toward Whole New Electronics

“Topological” acoustic transistor suggests circuits with dissipationless flow of electricity or light

3 min read
Model of a honeycomb lattice

Model of a honeycomb lattice that serves as the basis for a "transistor" of sound waves—whose design suggests new kinds of transistors of light and electricity, made from so-called topological materials. Electrons in a topological transistor, it is suspected, would flow without any resistance.

Hoffman Lab/Harvard SEAS

Potential future transistors that consume far less energy than current devices may rely on exotic materials called "topological insulators" in which electricity flows across only surfaces and edges, with virtually no dissipation of energy. In research that may help pave the way for such electronic topological transistors, scientists at Harvard have now invented and simulated the first acoustic topological transistors, which operate with sound waves instead of electrons.

Topology is the branch of mathematics that explores the nature of shapes independent of deformation. For instance, an object shaped like a doughnut can be deformed into the shape of a mug, so that the doughnut's hole becomes the hole in the cup's handle. However, the object couldn't lose the hole without changing into a fundamentally different shape.

Keep Reading ↓ Show less

Taking Cosmology to the Far Side of the Moon

New Chinese program plans to use satellites in lunar orbit to study faint signals from early universe

3 min read
crescent moon
Darwin Fan/Getty Images

A team of Chinese researchers are planning to use the moon as a shield to detect otherwise hard-to-observe low frequencies of the electromagnetic spectrum and open up a new window on the universe. The Discovering the Sky at the Longest Wavelengths (DSL) mission aims to seek out faint, low-frequency signals from the early cosmos using an array of 10 satellites in lunar orbit. If it launches in 2025 as planned, it will offer one of the very first glimpses of the universe through a new lens.

Nine “sister” spacecraft will make observations of the sky while passing over the far side of the moon, using our 3,474-kilometer-diameter celestial neighbor to block out human-made and other electromagnetic interference. Data collected in this radio-pristine environment will, according to researchers, be gathered by a larger mother spacecraft and transmitted to Earth when the satellites are on the near side of the moon and in view of ground stations.

Keep Reading ↓ Show less

Learn How to Use a High-Performance Digitizer

Join Teledyne for a three-part webinar series on high-performance data acquisition basics

1 min read

Webinar: High-Performance Digitizer Basics

Part 3: How to Use a High-Performance Digitizer

Date: Tuesday, December 7, 2021

Time: 10 AM PST | 1 PM EST

Keep Reading ↓ Show less