The December 2022 issue of IEEE Spectrum is here!

Close bar

Water Limits Changed Design of Biggest Solar Project

California regulators approve 1-gigawatt solar-thermal project, but its dry cooling means lower efficiency and higher cost

3 min read

21 September 2010—It’s easy to see why energy companies are pursuing utility-scale solar projects in California. The state is blessed with deserts soaked in sunshine, and it faces a legal mandate to acquire more renewable electricity. But the state is also cursed with a limited water supply. So California regulators are pushing water conservation practices on new plant designs, some of which are costly and can hinder efficiency.

Last week, the California Energy Commission approved the construction and operation of four solar-thermal power plants in the town of Blythe, with a planned overall capacity of around 1 gigawatt—the largest such installation yet. But to get the green light, the project developers had to redesign the plants to use a cooling technology that reduces their efficiency by 5 to 10 percent and increases the cost of electricity by 5 to 7 percent, according to Solar Millennium, which is jointly developing the project with Ferrostaal and Chevron.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less