Wall Street Tries Shortwave Radio to Make High-Frequency Trades Across the Atlantic

Financial firms hope radio can execute trades faster than fiber optic cables

3 min read
A photo of a cell tower with multiple levels of antennas sticking out of it.
Photo: Bob Van Valzah

In 2010, the company Spread Networks completed a fiber-optic cable linking two key trading hubs: Chicago and New York (or rather New Jersey, where Wall Street has its computerized trading equipment). That cable, built at a cost of some US $300 million, took the most direct route between those two points and shaved more than a millisecond from what had formerly been the shortest round-trip travel time for information: 14.5 milliseconds.

That tiny time savings was a boon for high-frequency financial traders, who could take advantage of it to buy or sell before others learned of distant price shifts. This general strategy, called latency arbitrage, has driven a technological arms race in the trading world, with companies competing fiercely to send information from one trading center to another in the minimum possible time.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

How the FCC Settles Radio-Spectrum Turf Wars

Remember the 5G-airport controversy? Here’s how such disputes play out

11 min read
This photo shows a man in the basket of a cherry picker working on an antenna as an airliner passes overhead.

The airline and cellular-phone industries have been at loggerheads over the possibility that 5G transmissions from antennas such as this one, located at Los Angeles International Airport, could interfere with the radar altimeters used in aircraft.

Patrick T. Fallon/AFP/Getty Images
Blue

You’ve no doubt seen the scary headlines: Will 5G Cause Planes to Crash? They appeared late last year, after the U.S. Federal Aviation Administration warned that new 5G services from AT&T and Verizon might interfere with the radar altimeters that airplane pilots rely on to land safely. Not true, said AT&T and Verizon, with the backing of the U.S. Federal Communications Commission, which had authorized 5G. The altimeters are safe, they maintained. Air travelers didn’t know what to believe.

Another recent FCC decision had also created a controversy about public safety: okaying Wi-Fi devices in a 6-gigahertz frequency band long used by point-to-point microwave systems to carry safety-critical data. The microwave operators predicted that the Wi-Fi devices would disrupt their systems; the Wi-Fi interests insisted they would not. (As an attorney, I represented a microwave-industry group in the ensuing legal dispute.)

Keep Reading ↓Show less
{"imageShortcodeIds":["29845282"]}