A photo of a dozen small round robots with containers for items attached to a whiteboard
Mengni Zhang

I don’t know about you, but being stuck at home during the pandemic made me realize two things. Thing the first: My entire life is disorganized. And thing the second: Organizing my life, and then keeping organized, is a pain in the butt. This is especially true for those of us stuck in apartments that are a bit smaller than we’d like them to be. With space at a premium, Mengni Zhang, a Ph.D. student at Cornell’s Architectural Robotics Lab, looked beyond floor space. Zhang wants to take advantage of wall space—even if it’s not easily reachable—using a small swarm of robot shelves that offer semiautonomous storage on demand.


During the pandemic I saw an increased number of articles advising people to clean up and declutter at home. We know the health benefits of maintaining an organized lifestyle, yet I could not find many empirical studies on understanding organizational behaviors, or examples of domestic robotic organizers for older adults or users with mobility impairments. There are already many assistive technologies, but most are floor based, which may not work so well for people living in small urban apartments. So, I tried to focus more on indoor wall-climbing robots, sort of like Roomba but on the wall.

The main goal was to quickly build a series of functional prototypes (here I call them SORT, which stands for “Self-Organizing Robot Team”) to conduct user studies to understand different people's preferences and perceptions toward this organizer concept. By helping people declutter and rearrange personal items on walls and delivering them to users as needed or wanted while providing some ambient interactions, I’m hoping to use these robots to improve quality of life and enhance our home environments.

This idea of intelligent architecture is a compelling one, I think—it’s sort of like the Internet of Things, except with an actuated physical embodiment that makes it more useful. Personally, I like to imagine hanging a coat on one of these little dudes and having it whisked up out of the way, or maybe they could even handle my bike, if enough of them work together. As Zhang points out, this concept could be especially useful for folks with disabilities who need additional workspace flexibility.

Besides just object handling, it’s easy to imagine these little robots operating as displays, as artwork, as sun-chasing planters, lights, speakers, or anything else. It’s just a basic proof of concept at the moment, and one that does require a fair amount of infrastructure to function in its current incarnation (namely, ferrous walls), but I certainly appreciate the researcher’s optimism in suggesting that “wall-climbing robots like the ones we present might become a next ‘killer app’ in robotics, providing assistance and improving life quality.”

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page
Blue

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less