Voliro Hexcopter Uses Rotating Nacelles to Perform Versatile Acrobatics

A team of ETH Zurich undergrads has created an innovative hexcopter that can move and turn in any direction

2 min read
Voliro Hexcopter Uses Rotating Nacelles to Perform Versatile Acrobatics
This innovative hexcopter can move and turn in any direction.
Image: Voliro

Last month, we wrote about ETH Zurich’s Omnicopter, a flying cube with rotors providing thrust in lots of different directions that allow the drone to translate and rotate arbitrarily. This is very handy, for lots of different reasons, but the Omnicopter itself is rather bulky and seems destined to live out its life in a Swiss laboratory.

A team of undergrads at ETH Zurich has taken the idea behind the Omnicopter and designed an even more versatile flying robot. Voliro offers the same kind of decoupled position and attitude control, except that instead of a cube full of rotors oriented in different directions, this drone uses rotating nacelles that can turn it from a traditional hexcopter into something much more versatile and acrobatic.

Voliro droneImage: Voliro

Voliro is part of a focus project at ETH Zurich’s Autonomous Systems Lab that’s intended to give students in the last year of their undergraduate degrees “the opportunity to design a complete system from scratch,” which seems like a fantastic way of making the transition into graduate school with some practical robotics experience.

They managed to develop Voliro from scratch in just nine months, with impressive results:

The disadvantage of Voliro over a drone like the Omnicopter is complexity: Those rotating nacelles add more degrees of freedom (and more points of failure) to the overall design. And the control problem is also different, but the potential for versatility seems similar.

We should make sure to point out that this research builds extensively on tons of other quadrotor and multirotor research over the past several years; in our Omnicopter post, Richard Voyles from Purdue highlighted some 2010 work on a fully-actuated hexcopter with canted props (video here). 

There’s also the “omnicopter” (just a name coincidence) from the Max Planck Institute for Biological Cybernetics that we covered at ICRA 2013, which also uses actuated, tilting rotors to achieve a similar effect.

[shortcode ieee-pullquote quote="The goal is to create an "amphibious robot" that can "fly, swim, and drive on the ground." It's not clear how the swimming bit is going to work, but the Voliro website is specific about a bunch of future improvements, including using three of the tilted rotor units as landing gear" float="right" expand=1]

From what we understand, Voliro is unique in that it’s trying to achieve a lot more than both full position and attitude control: The goal is to create an “amphibious robot” that can “fly, swim, and drive on the ground.” It’s not clear how the swimming bit is going to work, but the Voliro website is specific about a bunch of future improvements, including using three of the tilted rotor units as landing gear, and adding “a large sphere in the center of Voliro to make it roll omnidirectionally on the ground.”

If these actuated motor pods seem familiar, it’s because we’ve seen them before, on the VertiGo robot. This hybrid flying car used tilting rotors for propulsion as well as to drive straight up walls, which is very impressive. It probably won’t shock you to learn that VertiGo was also a focus project from ETH Zurich’s Autonomous Systems Lab, in partnership with Disney Research.

The ideas that come out of these focus projects are reliably creative and exciting, although we can only hope that they don’t get abandoned when the team moves on after the initial prototype is complete.

[ Voliro ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less