The December 2022 issue of IEEE Spectrum is here!

Close bar

Virtual Power Plants, Real Power

Five kilowatts here, a hundred kilowatts there—with a smart grid, it all adds up

3 min read

The Danish island of Bornholm, a quiet farming and fishing community of 42 000 in the Baltic Sea, will soon be home to one of the world’s smartest smart grids. Through the four-year, €21 million (US $28 million) EcoGrid project, about 2000 households there will be connected to an island-spanning network that will enable homeowners to cut back their electricity usage at times of peak demand and sell that unused wattage back to the grid at market rates. Managing all of these thousands of discrete energy trades, as well as Bornholm’s other power resources—including 36 megawatts of wind power, a 16-MW biomass plant, and a new fleet of electric cars—will be a central control system that behaves very much like a traditional power generator. Only this generator will be created entirely through software—a virtual power plant.

As its name implies, a virtual power plant doesn’t exist in the concrete-and-turbine sense. Rather, it uses the smart-grid infrastructure to tie together small, disparate energy resources as if they were a single generator. Just about any energy source can be linked up. And energy that’s not used can also contribute to a virtual power plant’s capacity.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less