Virgin Oceanic’s Voyage to the Bottom of the Sea

Virgin Oceanic hopes to launch a new era of manned deep-sea exploration

13 min read
illustration depicting experimental vehicle.
Illustration: Bryan Christie Design

As the battered little boat slides down a 3-meter ocean swell into the next trough, Chris Welsh grits his teeth and peers out into the storm. Sheets of rain pummel the dark windows of the bridge, and a Micronesian sailor wrestles with the wheel. It’s past midnight on a July night and we’re bobbing over the almost 11 kilometers of water that fill the deepest abyss on Earth, the Mariana Trench. Welsh is leading a small party of engineers, scientists, and adventurers under the banner of Virgin Oceanic; they’ve chugged out here aboard a 20-year-old ferryboat to test some unmanned deep-diving probes. It’s the first step in what they hope will be a glorious high-tech adventure, in which a man—Welsh, specifically—will visit the bottom of the trench before the end of this year.

But right now, most of us would be happy just to make it back to Guam, 130 km (81 miles) to the north. Another wave breaks over the boat and crashes down on the cabin house, dousing the upper deck. I recall a plaque mounted on a table in the main cabin that admonishes, “No passengers more than 20 miles from shore.” This 20-meter-long vessel is what oceanographers call a “ship of opportunity,” which means it was pressed into service for the mission basically because it was available. Welsh turns to the captain, who lives in the Mariana Islands, and asks, “In your experience, what usually happens in a storm like this? Does it get better? Does it get worse?”

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

"SuperGPS" Accurate to 10 Centimeters or Better

New optical-wireless hybrid makes use of existing telecommunications infrastructure

3 min read
illustration of man looking at giant smart phone with map and red "you are here" symbol
iStock

Modern life now often depends on GPS(short for Global Positioning System), but it can err on the order of meters in cities. Now a new study from a team of Dutch researchers reveals a terrestrial positioning system based on existing telecommunications networks can deliver geolocation info accurate to within 10 centimeters in metropolitan areas.

The scientists detailed their findings 16 November in the journal Nature.

Keep Reading ↓Show less

The Future of the Transistor Is Our Future

Nothing but better devices can tackle humanity’s growing challenges

7 min read
Close-up of a colorful semiconductor wafer held the white gloved hands of a clean room technician.

A 300-millimeter wafer from a GlobalFoundries fab in Dresden is full of advanced transistors. The industry will need to continue to produce more and better devices, argues the author.

Liesa Johannssen-Koppitz/Bloomberg/Getty Images

This is a guest post in recognition of the 75th anniversary of the invention of the transistor. It is adapted from an essay in the July 2022 IEEE Electron Device Society Newsletter. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

On the 75th anniversary of the invention of the transistor, a device to which I have devoted my entire career, I’d like to answer two questions: Does the world need better transistors? And if so, what will they be like?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.