Video Friday: Ingenuity on Mars

Your weekly selection of awesome robot videos

4 min read
Ingenuity in flight, taken by Perseverance
Photo: NASA/JPL-Caltech/ASU/MSSS

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRA 2021 – May 30-5, 2021 – [Online Event]
RoboCup 2021 – June 22-28, 2021 – [Online Event]
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
ROSCon 20201 – October 21-23, 2021 – New Orleans, LA, USA

Let us know if you have suggestions for next week, and enjoy today's videos.

Within the last four days, the Ingenuity has flown twice (!) on Mars.

This is an enhanced video showing some of the dust that the helicopter kicked up as it took off:

Data is still incoming for the second flight, but we know that it went well, at least:

[ NASA ]

Can someone who knows a lot about HRI please explain to me why I'm absolutely fascinated by Flatcat?

You can now back Flatcat on Kickstarter for a vaguely distressing $1,200.

[ Flatcat ]

Digit navigates a novel indoor environment without pre-mapping or markers, with dynamic obstacle avoidance. Waypoints are defined relative to the global reference frame determined at power-on. No bins were harmed in filming.

[ Agility Robotics ]

The Yellow Drum Machine, popped up on YouTube again this week for some reason. And it's still one of my favorite robots of all time.

[ Robotshop ]

This video shows results of high-speed autonomous flight in a forest through trees. Path planning uses a trajectory library with pre-established correspondences for collision checking. Decisions are made in 0.2-0.3ms enabling the flight at the speed of 10m/s. No prior map is used.

[ Near Earth ]

We present ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm. Our framework is built upon a physics engine and enables realistic interactions with objects while navigating through scenes and performing tasks.

[ Allen Institute ]

Well this is certainly one of the more unusual multirotor configurations I've ever seen.

[ KAIST ]

Thailand’s Mahidol University and the Institute of Molecular Biosciences chose ABB's YuMi cobot & IRB 1100 robot to work together to fast-track Covid-19 vaccine development. The robots quickly perform repetitive tasks such as unscrewing vials and transporting them to test stations, protecting human workers from injury or harm.

[ ABB ]

Skydio's 3D scan functionality is getting more and more impressive.

[ Skydio ]

With more than 50 service locations across Europe, Stadler Service is focused on increasing train availability, reliability, and safety. ANYbotics is partnering with Stadler Service to explore the potential of mobile robots to increase the efficiency and quality of routine inspection and maintenance of rolling stock.

[ ANYbotics ]

Inspection engineers at Kiwa Inspecta used the Elios 2 to inspect a huge decommissioned oil cavern. The inspection would have required six months and a million Euros if conducted manually but with the Elios 2 it was completed in just a few days at a significantly lower cost.

[ Flyability ]

RightHand Robotics builds a data-driven intelligent piece-picking platform, providing flexible and scalable automation for predictable order fulfillment. RightPick™ 3 is the newest generation of our award-winning autonomous, industrial robot system.

[ RightHand Robotics ]

NASA's Unmanned Aircraft Systems Traffic Management project, or UTM, is working to safely integrate drones into low-altitude airspace. In 2019, the project completed its final phase of flight tests. The research results are being transferred to the Federal Aviation Administration, who will continue development of the UTM system and implement it over time.

[ NASA ]

At the Multi-Robot Planning and Control lab, our research vision is to build multi-robot systems that are capable of acting competently in the real world. We study, develop and combine automated planning, coordination, and control methods to achieve this capability. We find that some of the most interesting basic research questions derive from the problem features and constraints imposed by real-world applications. This video illustrates some of these research questions.

[ Örebro ]

Thanks Fan!

The University of Texas at Austin’s Cockrell School of Engineering and College of Natural Sciences are partnering on life-changing research in artificial intelligence and robotics—ensuring that UT continues to lead the way in launching tomorrow’s technologies.

[ UT Robotics ]

Thanks Fan!

Over the past ten years various robotics and remote technologies have been introduced at Fukushima sites for such tasks as inspection, rubble removal, and sampling showing success and revealing challenges. Successful decommissioning will rely on the development of highly reliable robotic technologies that can be deployed rapidly and efficiently into the sites. The discussion will focus on the decommissioning challenges and robotic technologies that have been used in Fukushima. The panel will conclude with the lessons learned from Fukushima’s past 10-year experience and how robotics must prepare to be ready to respond in the event of future disasters.

[ IFRR ]

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page
Blue

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less