IEEE.orgIEEE Xplore Digital LibraryIEEE StandardsMore Sites
      Sign InJoin IEEE
      Build a Coffee-Can Radar
      Share
      FOR THE TECHNOLOGY INSIDER
      Explore by topic
      AerospaceArtificial IntelligenceBiomedicalComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsSensorsTelecommunicationsTransportation
      IEEE Spectrum
      FOR THE TECHNOLOGY INSIDER

      Topics

      AerospaceArtificial IntelligenceBiomedicalComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsSensorsTelecommunicationsTransportation

      Sections

      FeaturesNewsOpinionCareersDIYThe Big PictureEngineering Resources

      More

      Special ReportsCollectionsExplainersPodcastsVideosNewslettersTop Programming LanguagesRobots Guide

      For IEEE Members

      Current IssueMagazine ArchiveThe InstituteTI Archive

      For IEEE Members

      Current IssueMagazine ArchiveThe InstituteTI Archive

      IEEE Spectrum

      About UsContact UsReprints & PermissionsAdvertising

      Follow IEEE Spectrum

      Support IEEE Spectrum

      IEEE Spectrum is the flagship publication of the IEEE — the world’s largest professional organization devoted to engineering and applied sciences. Our articles, podcasts, and infographics inform our readers about developments in technology, engineering, and science.
      Join IEEE
      Subscribe
      About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy Policy
      © Copyright 2023 IEEE — All rights reserved. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

      IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.

      view privacy policy accept & close

      Enjoy more free content and benefits by creating an account

      Saving articles to read later requires an IEEE Spectrum account

      The Institute content is only available for members

      Downloading full PDF issues is exclusive for IEEE Members

      Access to Spectrum's Digital Edition is exclusive for IEEE Members

      Following topics is a feature exclusive for IEEE Members

      Adding your response to an article requires an IEEE Spectrum account

      Create an account to access more content and features on IEEE Spectrum, including the ability to save articles to read later, download Spectrum Collections, and participate in conversations with readers and editors. For more exclusive content and features, consider Joining IEEE.

      Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more →

      CREATE AN ACCOUNTSIGN IN
      JOIN IEEESIGN IN
      Close

      Special offer: Join IEEE now for 2023 and save 50%!

      IEEE Members receive 12 print issues of IEEE Spectrum and enjoy PDF downloads, full access to our archive with thousands of in-depth articles, and other exclusive content and features. Join IEEE today for 2023 and save 50%!

      JOIN IEEE
      DIYTopicTypeVideo

      Build a Coffee-Can Radar

      A quick look at the workings of the DIY coffee-can radar from MIT

      David Schneider
      01 Nov 2012
      Image: David Schneider, Grace Schneider, and Celia Gorman
      hands ontest and measurementtools and toystype:videoDIYSARMIT

      Researchers at MIT’s Lincoln Laboratory devised a radar system that any avid DIYer should have no trouble reproducing. This simple radar system provides a basis for courses being taught at MIT and elsewhere. It is capable not only of measuring velocities but also of finding the range to targets. You can even make crude synthetic-aperture radar images with it.

      David Schneider: I put the radar signal here on my oscilloscope, I turn it on, and you’ll see the waveform change.

      David Schneider: Hi, I’m Dave Schneider for IEEE Spectrum magazine, and this is the MIT coffee-can radar. There may be a few hundred dollars in parts here, but considering that you can use this not only to measure speeds, like a police radar gun, it can actually be used to measure distances very well and even, crudely, as a synthetic-aperture radar.

      So we’re out at a local ball field, and we’re going to give the MIT “can-tenna” radar a run here. Got it set up. All I need to do is start recording, and then I’m going to run down the track and back.

      While we’re waiting for my laptop to process the data I just collected, let me give you a little bit of a close-in tour of what’s what.

      As you can see, we have a couple of generic coffee cans. Inside the coffee can is just a little wire, and that makes for our radar antenna.

      The RF electronics was the easiest to make. It’s these little modules that are just screwed together.

      This is a voltage-controlled oscillator. There’s an attenuator here, which you can barely see under these wires, an amplifier here, and a splitter. So part of the signal goes to this antenna, the transmitting antenna, and part of the signal gets fed into this mixer. From the receive antenna, here, a signal goes into another amplifier, is amplified and mixed. It comes through this wire here onto the board, and then the audio comes out and into the microphone inputs and into the Zoom recorder.

      I’m going to show you how to process the data now. You need a Matlab script for that. (Actually, in this case it’s an Octave script.) And Octave starts crunching on the data that we just recorded out on the ball field. You can see the results, a range-time-intensity plot. On the horizontal axis, you have range to your target. On the vertical axis we have time, elapsed time, from top to bottom. You see a general vertical grain here, a lot of vertical lines, and those are just reflections from objects that don’t move. But you also notice this reflector here that gets farther away as time goes by, and then disappears and reappears, getting closer as time goes by. Well, that’s me.

      There’s a second plot, a little more processing done to cancel out that clutter, those static objects. And you see my reflection much more clearly: going out, turning around, and coming back. And you can see it registers me out to 50 meters or more, which is darn good for a radar system that you build in your garage.

      When I turned to try and make a synthetic-aperture radar image, I discovered that I needed a really big target: I ended up going to a big water tower, conveniently across the road from a building that had a nice balcony. It took a little while. You have to move the radar across about 100 inches, moving it about 2 inches at a time while gathering data. But it worked. Like I say, it’s not the most precise SAR image you’ll see, but not bad for a garage project.

      For IEEE Spectrum, I’m David Schneider.

      NOTE: Transcripts are created for the convenience of our readers and listeners and may not perfectly match their associated interviews and narratives. The authoritative record of IEEE Spectrum’s video programming is the video.

      Video: David Schneider, Grace Schneider, and Celia Gorman

      The Conversation (0)

      Trending Stories

      The most-read stories on IEEE Spectrum right now

      SemiconductorsTopicTypeComputingNews

      Nvidia Speeds Key Chipmaking Computation by 40x

      TelecommunicationsTopicTypeComputingNews

      This Mirror Reverses How Light Travels in Time

      SensorsTopicTypeNews

      Liquid Salts Bring Pushbutton Lenses Into Focus

      RoboticsTopicTypeSpecial ReportsVideo

      360 Video: Zoom Over Zanzibar With Tanzania’s Drone Startups

      Come along for the ride as drones soar over the farms and schools of Tanzania

      Evan Ackerman

      Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

      Michael Koziol

      Michael Koziol is an associate editor at IEEE Spectrum where he covers everything telecommunications. He graduated from Seattle University with bachelor's degrees in English and physics, and earned his master's degree in science journalism from New York University.

      Eliza Strickland

      Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

      09 May 2019
      6:56
      Photo: IEEE Spectrum
      dronesgadgetstype:videoEast Africa dronesmappingTanzaniaAfricadelivery drones360 video

      With 360-degree video, IEEE Spectrum puts you aboard drones that are flying high above the Tanzanian landscape: You’ll ride along as drones soar above farms, towns, and the blue expanse of Lake Victoria. You’ll also meet the local entrepreneurs who are creating a new industry, finding applications for their drones in land surveying and delivery. And you’ll get a close-up view from a bamboo grove as a drone pilot named Bornlove builds a flying machine from bamboo and other materials.

      You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

      Keep Reading ↓Show less
      RoboticsTopicTypeSpecial ReportsVideo

      360 Video: Go on a Mission With Zipline’s Delivery Drones

      Immerse yourself in the action as Zipline catapults its drones into the Rwandan sky

      Evan Ackerman

      Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

      Michael Koziol

      Michael Koziol is an associate editor at IEEE Spectrum where he covers everything telecommunications. He graduated from Seattle University with bachelor's degrees in English and physics, and earned his master's degree in science journalism from New York University.

      Eliza Strickland

      Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

      06 May 2019
      IEEE Spectrum
      dronestype:videoEast Africa dronesRwandadelivery dronesZipline360 video

      With 360 video, IEEE Spectrum takes you behind the scenes with one of the world’s first drone-delivery companies. Zipline, based in California, is using drones to deliver blood to hospitals throughout Rwanda. At an operations center in Muhanga, you’ll watch as Zipline technicians assemble the modular drones, fill their cargo holds, and launch them via catapult. You’ll see a package float down from the sky above a rural hospital, and you’ll get a closeup look at Zipline’s ingenious method for capturing returning drones.

      You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

      Keep Reading ↓Show less
      DIYTopicTypeVideo

      A Techie’s Tour of New York City

      Here are some NYC attractions that you won’t find in the guidebooks

      Stephen Cass

      Stephen Cass is the special projects editor at IEEE Spectrum. He currently helms Spectrum's Hands On column, and is also responsible for interactive projects such as the Top Programming Languages app. He has a bachelor's degree in experimental physics from Trinity College Dublin.

      17 Oct 2018
      A Techie's Tour Of NYC
      www.youtube.com
      type:videoNew York CityDIYtourismvideosrocketsNikola Teslahistorytechnologyeventshackerspacenew york citynikola teslanyc tourist videonyc tourist guidetech tour nycvideonyc tech tour

      Do your travel plans include New York City? Are you a techie? If the answer to those questions is yes, let IEEE Spectrum be your guide! We've put together a list of some of our favorite places to visit, including important locations in the history of electrotechnology (New York was once the center of the electrical and electronic world) and places where fun and interesting things are happening today. See where Nikola Tesla lived, check out cutting-edge artists working with technology, or take the kids to see an Atlas and Titan rocket.

      All the locations are accessible via the subway, and many are free to visit. If you do visit, take a selfie and post a link in the comments below.

      Keep Reading ↓Show less
      About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy Policy
      © Copyright 2023 IEEE — All rights reserved. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.