Velodyne Announces a Solid-State Lidar

The hand-size unit will be demonstrated this summer, released in test quantities this year, and mass produced in 2018

2 min read
velodyne photo illustration
Photo-illustration: Velodyne

Velodyne today announced a solid-state automotive lidar ranging system that the company will demonstrate in a few months, release in test kits later this year, and mass produce at its new megafactory in San Jose, Calif., in 2018. The estimated price per unit is in the hundreds of dollars.

The company hopes to nail down the dominance it has enjoyed ever since pioneering automotive lidar a dozen years ago. That’s when its revolving arrays of lasers and optical sensors first appeared in rooftop towers on experimental self-driving vehicles, notably the Google car. Such arrays give 360-degree coverage and can see in detail what radar can only make out dimly, but they aren’t easy to build and calibrate in small, partially handmade batches. This is why their price still rises into the tens of thousands of dollars.

A solid-state version could be turned out in quantity for much less money, and in a smaller and more rugged package. That’s important for use in a production car meant to operate for years on end.

The Velodyne package measures 125 millimeters by 50 mm by 55 mm (about 5 by 2 by 2 inches)—small enough to be embedded into the front, sides, and corners of vehicles. Such a setup can give theater-in-the-round coverage even though each device covers only 120 degrees horizontally. They also span 35 degrees vertically, which comes in handy when climbing hills.

“I don’t necessarily believe that [the solid-state lidar] will obviate or replace the 360-degree units—it will be a complement,” Marty Neese, chief operating officer of Velodyne, told IEEE Spectrum earlier this month. “There’s a lot of learning yet to go by carmakers to incorporate lidar in a thoughtful way.”

Velodyne hopes to win the new phase of this game by being first to market. “The first mover sets the standard,” Neese said. “Software is 60 percent of the effort, so if you show up [later] with a new piece of hardware, it may not fit in.”

In lidar land, as on the larger self-driving continent, ambitious timetables are the rule. Velodyne’s rivals have cited even faster schedules. For instance, the startup Innoviz, in Israel, has promised to market a US $100 solid-state lidar by 2018.

Quanergy, one of the first solid-state lidar startups, perhaps poses the most immediate challenge to Velodyne. Unlike Velodyne, Quanergy has a manufacturing partner with plenty of experience with the automotive sector.

“This year is when we will be providing samples to the broader market—an announcement will be coming soon,” said Greg Noelte, Sensata’s global director for business development, in an interview earlier this month. “We’re targeting 2020–2022 for high-volume production.”

Noelte said that the key to winning the game would be in getting large numbers of units that meet tough automotive specifications and that Sensata’s many decades of experience in manufacturing gave it an edge. “It’s one thing to produce a few prototypes, another to produce one that can last 100,000 to 150,000 miles reliably,” he said. “Our specialty is in making it work, in process development.”

But Neese says lidar isn’t easy, and that Velodyne’s experience with the persnickety technology is what really matters.

“Don’t think of one guy at a bench [building a lidar set], think of a supply chain,” he says. “Imagine circuit board assemblies coming from completely automated factories, and laser boards, top and bottom assembly boards, all of it made in very capable factories with state-of-the-art automation. Lasers are similarly done in a very high-tech lab; it’s not trivial to make lasers.”

The Conversation (0)

We Need More Than Just Electric Vehicles

To decarbonize road transport we need to complement EVs with bikes, rail, city planning, and alternative energy

11 min read
A worker works on the frame of a car on an assembly line.

China has more EVs than any other country—but it also gets most of its electricity from coal.

VCG/Getty Images
Green

EVs have finally come of age. The total cost of purchasing and driving one—the cost of ownership—has fallen nearly to parity with a typical gasoline-fueled car. Scientists and engineers have extended the range of EVs by cramming ever more energy into their batteries, and vehicle-charging networks have expanded in many countries. In the United States, for example, there are more than 49,000 public charging stations, and it is now possible to drive an EV from New York to California using public charging networks.

With all this, consumers and policymakers alike are hopeful that society will soon greatly reduce its carbon emissions by replacing today’s cars with electric vehicles. Indeed, adopting electric vehicles will go a long way in helping to improve environmental outcomes. But EVs come with important weaknesses, and so people shouldn’t count on them alone to do the job, even for the transportation sector.

Keep Reading ↓Show less