The December 2022 issue of IEEE Spectrum is here!

Close bar

Vagus Nerve Implant Fails to Fix Heart Failure

Boston Scientific's stimulator showed no benefit in big European trial, but Cyberonics' smaller, earlier-stage trial succeeded

2 min read
Vagus Nerve Implant Fails to Fix Heart Failure
Implanted devices that stimulate the vagus nerve in the neck help with epilepsy and depression but not, it seems, heart failure.
Illustration: Getty Images

human os icon

Attempts to use electronic implants to treat heart failure by stimulating one of a pair of nerves in the neck led to mixed results according to research presented this week at the 2014 European Society of Cardiology (ESC) Congress, in Barcelona. Boston Scientific's large, randomized trial failed to meet its key goals. But Cyberonics, which pioneered the use of such stimulators to combat epilepsy and depression, ran a smaller trial without controls that succeeded, according to Reuters.

Both trials used implanted electric stimulators that attached to one of a pair of key nerves in the neck, the vagus nerve. The nerve connects the brain to the heart, stomach, and other organs. It's a key target for medical device developers because it allows convenient access to the brain to treat disorders of that organ, such as epilepsy and depression, as well as to gut organs to treat other problems, such as obesity.

Heart failure, the inability of the heart to pump enough blood to satisfy the body's needs, has also been on the list of targets. The failure of Boston Scientific's trial was a big surprise to its leaders. "There is robust pre-clinical data showing the benefit of [vagus nerve stimulation], but the NECTAR-HF trial failed to demonstrate a successful clinical translation of this protocol," Faiez Zannad an investigator in the trial at l'Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, in Vandoeuvre-lès-Nancy, France, said in a press release.

Boston Scientific was hoping to see a key marker of improvement—a decrease in the size of the left ventricle when it's fully contracted. They were also looking for other heart dimension measurements,  as well as improvements in exercise capacity and in levels of the hormone tied to heart failure.

The results were especially disappointing because of the care used in designing the study. 96 heart failure patients were recruited from across Europe, and all received implants for their right vagus nerve. Two-thirds had the stimulator turned on, while one third acted as controls with the stimulator off. All received the best standard treatment for heart failure during the following six months. After that point the controls, too, had the stimulator switched on.

Zannad suggested that the failure to see results may have been because the treatment group was already pretty well managed using standard medical therapies or because six months is too short a time period. The amount of current delivered might also have been too low.

The Cyberonics trial also followed patients for six months, but it was less convincing because it lacked a control group that received implants but no stimulation. Together, the 60 patients averaged a 4.5 percent improvement in left ventricular ejection fraction—a measure of how much blood makes it out of the left ventricle when it contracts.

"I think, at six months, that [4.5 percent improvement] is a very impressive achievement," study leader Inder Anand from the University of Minnesota told reporters.

Clearly, more clinical trials will be needed to see if this therapy can make a difference. But, following the failure of Boston Scientific's trial, whether or not to pay for that research will likely be a more difficult question.

The Conversation (0)

Are You Ready for Workplace Brain Scanning?

Extracting and using brain data will make workers happier and more productive, backers say

11 min read
A photo collage showing a man wearing a eeg headset while looking at a computer screen.
Nadia Radic

Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

Keep Reading ↓Show less