The Digger D-3 is the most recent addition to my own personal list of robots not to stand in front of. It’s a mine-clearing robot, and not the sort of mine-clearing robot that pokes around with a metal detector. Instead, it’s the sort of mine-clearing robot that just sucks it up and tells the landmines to bring it.

At the front of the D-3 is a giant spinning metal pulverizer thing of death, which has tungsten hammers that beat down a quarter meter into the ground, turning everything they touch into mulch. This includes landmines, and although the mines do tend to blow up before getting shredded, the robot hardly seems to notice:

An operator commands this beast from a safe distance using a remote control unit. The hull of the robot is made up of hardened steel plates in a “V” shape to help limit any damage from antitank mines and unexploded shells of sizes up to 81mm, and the D-3 has been able to successfully ingest mines containing as much as 8 kilograms of explosive, which is nothing to sneeze at. The only potentially vulnerable spots are the air intakes, which are themselves protected from flying shrapnel by special grates. At full throttle, the D-3 can reliably clear a comforting 100 percent of landmines from the ground at a rate of 1,000 square meters per hour [about 10,000 square feet per hour], while also divesting the land of any unwanted shrubbery and unlucky mole colonies.

Despite all the protection, machines do break down on occasion, and Digger has taken the somewhat unusual step of making the robot as easy as possible for other people to repair. The guts of the robot are straightforward to access, the armor has been designed to be easy to weld, and Digger even provides plans so that if you have the means, you can build your own spare parts. The reason for doing this is that Digger wants the D-3 to be able to make a difference in far-flung communities crippled by the threat of landmines, and to do that, you need an extremely reliable robot.

The future for the D-3 likely lies in some form of limited autonomy, but don’t worry: The people who actually end up using this thing don’t like the idea of it being fully autonomous any more than you do. Expect it to eventually be able to obey pretty specific instructions like “go here,” as opposed to commands like “hey, why don’t you find a spot where you think there might be landmines, beat it into a pulp, and come back when you’re done.”

[ Digger D-3 ] via [ Robots Podcast ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less