The December 2022 issue of IEEE Spectrum is here!

Close bar

Unsticking MEMS

Exotic materials could combat the Casimir effect, a kind of quantum-mechanical stickiness

2 min read

Researchers at Los Alamos National Laboratory, in New Mexico, think they may have the answer to a vexing problem called stiction, which causes ultrasmall components of microelectromechanical systems (MEMS) to stick together. This impediment to micromovement is caused by the Casimir effect (after the Dutch theoretical physicist Hendrik Casimir), an odd attractive force that influences only objects that are very close together. As MEMS components are shrunk to a scale of hundreds of nanometers or less, many engineers predict that the Casimir effect will become more of a problem.

”The Casimir force is the ultimate cause of friction in the nanoworld,” says Ulf Leonhardt, a theoretical physicist at the University of St. Andrews, in Scotland. ”Micro- or nanomachines could run smoother and with less or no friction at all if one can manipulate the Casimir force.”

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Why Functional Programming Should Be the Future of Software Development

It’s hard to learn, but your code will produce fewer nasty surprises

11 min read
Vertical
A plate of spaghetti made from code
Shira Inbar
DarkBlue1

You’d expectthe longest and most costly phase in the lifecycle of a software product to be the initial development of the system, when all those great features are first imagined and then created. In fact, the hardest part comes later, during the maintenance phase. That’s when programmers pay the price for the shortcuts they took during development.

So why did they take shortcuts? Maybe they didn’t realize that they were cutting any corners. Only when their code was deployed and exercised by a lot of users did its hidden flaws come to light. And maybe the developers were rushed. Time-to-market pressures would almost guarantee that their software will contain more bugs than it would otherwise.

Keep Reading ↓Show less
{"imageShortcodeIds":["31996907"]}