The December 2022 issue of IEEE Spectrum is here!

Close bar

Unclean at Any Speed

Electric cars don’t solve the automobile’s environmental problems

11 min read
Unclean at Any Speed
Photo-illustration: Smalldog Imageworks

07electricmainPhoto-illustration: Smalldog Imageworks; Photos: car, Transtock/Corbis; coal: Nolimitpictures/iStockphoto

Last summer, California highway police pulled over pop star Justin Bieber as he sped through Los Angeles in an attempt to shake the paparazzi. He was driving a hybrid electric car—not just any hybrid, mind you, but a chrome-plated Fisker Karma, a US $100 000 plug-in hybrid sports sedan he’d received as an 18th-birthday gift from his manager, Scooter Braun, and fellow singer Usher. During an on-camera surprise presentation, Braun remarked, “We wanted to make sure, since you love cars, that when you are on the road you are always looking environmentally friendly, and we decided to get you a car that would make you stand out a little bit.” Mission accomplished.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

John Bardeen’s Terrific Transistorized Music Box

This simple gadget showed off the magic of the first transistor

5 min read
 A small electronic gadget encased in clear plastic has a speaker and some buttons.

This music box demonstrated the portability and responsiveness of the point-contact transistor.

The Spurlock Museum/University of Illinois at Urbana-Champaign

On 16 December 1947, after months of work and refinement, the Bell Labs physicists John Bardeen and Walter Brattain completed their critical experiment proving the effectiveness of the point-contact transistor. Six months later, Bell Labs gave a demonstration to officials from the U.S. military, who chose not to classify the technology because of its potentially broad applications. The following week, news of the transistor was released to the press. The New York Herald Tribune predicted that it would cause a revolution in the electronics industry. It did.

Keep Reading ↓Show less

Liquid Metal Stretchy Circuits, Built With Sound

Encase metallic droplets in plastic for elastic electronics

2 min read
Dark photograph of gloved hands holding an item that has the letters DMDL, with glowing yellow rectangles in an assortment of spots on the letters.

Liquid metal particles sheathed in polymers connect microLEDs to make an ultra-stretchable display.

Korea Advanced Institute of Science and Technology

A team in Korea has used sound waves to connect tiny droplets of liquid metals inside a polymer casing. The novel technique is a way to make tough, highly conductive circuits that can be flexed and stretched to five times their original size.

Making stretchable electronics for skin-based sensors and implantable medical devices requires materials that can conduct electricity like metals but deform like rubber. Conventional metals don’t cut it for this use. To make elastic conductors, researchers have looked at conductive polymers and composites of metals and polymers. But these materials lose their conductivity after being stretched and released a few times.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.