The December 2022 issue of IEEE Spectrum is here!

Close bar

Uncertain Outlook for Concentrated Photovoltaics

Generating and installation costs are still very high compared to standard electricity sources

1 min read
Uncertain Outlook for Concentrated Photovoltaics

A report issued recently by CPV Today says that the levelized cost of electricity from concentrated photovoltaics "could fall as low" as 8 cents per kilowatthour in 2015, from 26 cents/kWh currently. Installation costs of highly concentrating PV--that is to say, CPV's average capital costs--"are set" to fall 49 percent to $2.47/W in 2015 from $4.84/W today.

What stands out in these industry-friendly formulations is the use of phrases like "could" and "set to." Even in this almost avowedly optimistic assessment, current CPV generating costs are a great deal higher than average electricity costs today and are almost sure to remain significantly higher five years from how. Compared with wind energy, solar's closest competitor, CPV installation costs will be at least 20 percent higher five years from now than wind capital costs are today.

The outlook for CPV is of particular interest because concentrating PV is sometimes considered closer to commercial competitiveness than standard PV, especially in relatively large plants that produce electricity for the grid. The CPV Today report mentions, in this connection, a 59 MW plant being built in Taiwan.

An alternative to CPV is thermal solar, in which for example an oil is warmed by parabolic mirrors and the heat is transferred to a molten salt in tanks, where steam is generated to drive turbines. Physics Nobelist Robert Laughlin has been giving talks in which he touts that solar technology, mentioning a plant in southern Spain (Andasol, above). But there too, Laughlin concedes, generating costs are at present about 30 cents/kWh, about five times average electricity costs.

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less