Simple Vibrating Bot Climbs Tubes With Ease

Dynamic motion propels the robot at up to 20 body lengths per second

1 min read

I have to admit that I'm a sucker for simple solutions to difficult problems. At ICRA this week, one of the cleverest new designs (and winner of the award for best video) was for a small tube climbing robot. The Biorobotics lab and Manipulation lab at Carnegie Mellon University have been working for several years on dynamic climbing bots that can climb between walls without any special attachment mechanism. But they wanted to come up with a smaller design that could make it up three-dimensional tubes.

[youtube https://www.youtube.com/v/As1xtbNogcM&hl=en_US&fs=1& expand=1]  

The result is this little device. It's simple motor turns an unbalanced mass at a uniform velocity. As the mass swings around, it causes the robot to bounce back and forth between the tube walls. Two rubber o-rings let the researches specify the exact contact points and increase friction with the walls.

This isn't the first tube-climbing, vibrating robot, but it has some distinct advantages. Earlier designs relied on fibers or bristles to create anisotropic friction with the walls and vibration caused motion in the direction of lowest friction. The problem with these designs comes when you need to remove the robot--now you're forced to work against the maximum friction.

What's most impressive about Carnegie Mellon's new bot is its speed, versatility, and payload capability. In the video, you can see that it travels up to 20 body-lengths per second and has a payload capacity of roughly 5x it's weight. The robot can even climb different sized tubes, although at different rates.

The researchers say they weren't application driven, but it's not hard to imagine such a simple device coming in handy for navigating tubing quickly.

(Video courtesy of Amir Degani, Siyuan Feng, Howie Choset, and Matthew T. Mason)

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less